摘要
查询对象的相关信息。
声明
#include <zircon/syscalls.h>
zx_status_t zx_object_get_info(zx_handle_t handle,
uint32_t topic,
void* buffer,
size_t buffer_size,
size_t* actual,
size_t* avail);
说明
zx_object_get_info()
会请求提供的句柄(或句柄所引用的对象)的相关信息。topic 参数用于指明所需的具体信息。
buffer 是指向大小为 buffer_size 的缓冲区的指针,用于返回信息。
actual 是一个可选指针,用于返回已写入缓冲区的记录数。
avail 是一个可选指针,用于返回可读取的记录数。
如果缓冲区大小不足,avail 将大于 actual。
主题
ZX_INFO_HANDLE_VALID
handle 类型:Any
缓冲区类型:n/a
如果 handle 有效,则返回 ZX_OK
;否则,返回 ZX_ERR_BAD_HANDLE
。系统不会返回任何记录,并且 buffer 可能为 NULL。
ZX_INFO_HANDLE_BASIC
handle 类型:Any
缓冲区类型:zx_info_handle_basic_t[1]
typedef struct zx_info_handle_basic {
// The unique id assigned by kernel to the object referenced by the
// handle.
zx_koid_t koid;
// The immutable rights assigned to the handle. Two handles that
// have the same koid and the same rights are equivalent and
// interchangeable.
zx_rights_t rights;
// The object type: channel, event, socket, etc.
uint32_t type; // zx_obj_type_t;
// If the object referenced by the handle is related to another (such
// as the other end of a channel, or the parent of a job) then
// |related_koid| is the koid of that object, otherwise it is zero.
// This relationship is immutable: an object's |related_koid| does
// not change even if the related object no longer exists.
zx_koid_t related_koid;
} zx_info_handle_basic_t;
ZX_INFO_HANDLE_COUNT
handle 类型:Any
缓冲区类型:zx_info_handle_count_t[1]
typedef struct zx_info_handle_count {
// The number of outstanding handles to a kernel object.
uint32_t handle_count;
} zx_info_handle_count_t;
handle_count 应仅用作调试辅助。请勿使用它来检查不受信任的进程能否修改内核对象。由于系统调度程序的异步性质,在最后一个句柄从一个进程传输到另一个进程期间,可能存在一个时间窗口,在此期间,上一个句柄所有者可能会修改对象。
ZX_INFO_PROCESS_HANDLE_STATS
handle 类型:Process
缓冲区类型:zx_info_process_handle_stats_t[1]
typedef struct zx_info_process_handle_stats {
// The number of outstanding handles to kernel objects of each type.
uint32_t handle_count[ZX_OBJ_TYPE_UPPER_BOUND];
} zx_info_process_handle_stats_t;
ZX_INFO_HANDLE_TABLE
handle 类型:Process
缓冲区类型:zx_info_handle_extended_t[n]
返回一个 zx_info_handle_extended_t
数组,其中包含调用时进程中的每个句柄。内核会确保返回的句柄保持一致。
typedef struct zx_info_handle_extended {
// The object type: channel, event, socket, etc.
zx_obj_type_t type;
// The handle value, which is only valid for the process that
// was passed to ZX_INFO_HANDLE_TABLE.
zx_handle_t handle_value;
// The immutable rights assigned to the handle. Two handles that
// have the same koid and the same rights are equivalent and
// interchangeable.
zx_rights_t rights;
uint32_t reserved;
// The unique id assigned by kernel to the object referenced by the
// handle.
zx_koid_t koid;
// If the object referenced by the handle is related to another (such
// as the other end of a channel, or the parent of a job) then
// |related_koid| is the koid of that object, otherwise it is zero.
// This relationship is immutable: an object's |related_koid| does
// not change even if the related object no longer exists.
zx_koid_t related_koid;
// If the object referenced by the handle has a peer, like the
// other end of a channel, then this is the koid of the process
// which currently owns it.
zx_koid_t peer_owner_koid;
} zx_info_handle_extended_t;
请注意,进程可能对其没有句柄的对象具有有效引用。例如,所有句柄均已关闭的正在运行的线程。
ZX_INFO_JOB
handle 类型:Job
缓冲区类型:zx_info_job_t[1]
typedef struct zx_info_job {
// The job's return code; only valid if |exited| is true.
// If the code is valid, it will be one of the ZX_TASK_RETCODE values.
int64_t return_code;
// If true, the job has exited and |return_code| is valid.
// Killing a job is the only way for a job to exit.
bool exited;
// True if the ZX_PROP_JOB_KILL_ON_OOM property was set.
bool kill_on_oom;
// True if a debugger is attached to the job.
bool debugger_attached;
} zx_info_job_t;
请注意,|exited| 会在 |zx_task_kill| 或等效操作(例如 OOM 终止)后立即报告作业已退出,但子作业和进程可能仍在退出过程中。
ZX_INFO_PROCESS
handle 类型:Process
缓冲区类型:zx_info_process_t[1]
typedef struct zx_info_process {
// The process's return code; only valid if the
// |ZX_PROCESS_INFO_FLAG_EXITED| flag is set. If the process was killed, it
// will be one of the |ZX_TASK_RETCODE| values.
int64_t return_code;
// The monotonic time at which `zx_process_start()` was called, only valid
// if the |ZX_INFO_PROCESS_FLAG_STARTED| flag is set.
zx_instant_mono_t start_time;
// Bitwise OR of ZX_INFO_PROCESS_FLAG_* values.
uint32_t flags;
} zx_info_process_t;
请注意,|flags| 会立即报告进程在执行 |zx_task_kill| 后已退出(即,其中将包含 ZX_INFO_PROCESS_FLAG_EXITED),但子线程可能仍在退出进程中。
ZX_INFO_PROCESS_THREADS
handle 类型:Process
buffer 类型:zx_koid_t[n]
返回一个 zx_koid_t
数组,其中每个元素对应于进程中此时正在运行的每个线程。
请注意,获取线程列表本身就存在争用问题。可以先暂停所有线程来稍微缓解此问题,但请注意,外部线程可以创建新线程。actual 将包含 buffer 中返回的线程数。avail 将包含获取线程列表时进程的线程总数,该值可能大于 actual。
ZX_INFO_THREAD
handle 类型:Thread
缓冲区类型:zx_info_thread_t[1]
typedef struct zx_info_thread {
// One of ZX_THREAD_STATE_* values.
uint32_t state;
// If |state| is ZX_THREAD_STATE_BLOCKED_EXCEPTION, the thread has gotten
// an exception and is waiting for the exception to be handled by the
// specified channel.
// The value is one of ZX_EXCEPTION_CHANNEL_TYPE_*.
uint32_t wait_exception_channel_type;
// CPUs this thread may be scheduled on, as specified by
// a profile object applied to this thread.
//
// The kernel may not internally store invalid CPUs in the mask, so
// this may not exactly match the mask applied to the thread for
// CPUs beyond what the system is able to use.
zx_cpu_set_t cpu_affinity_mask;
} zx_info_thread_t;
目前,此结构体中的值主要用于信息和调试目的。
各种 ZX_THREAD_STATE_
值由以下代码定义
#include <zircon/syscalls/object.h>
ZX_THREAD_STATE_NEW
:线程已创建,但尚未开始运行。ZX_THREAD_STATE_RUNNING
:线程正在正常运行用户代码。ZX_THREAD_STATE_SUSPENDED
:因zx_task_suspend()
而停止。ZX_THREAD_STATE_BLOCKED
:在系统调用中或处理异常时。此值绝不会单独返回。请参阅下文中的 `ZX_THREAD_STATEBLOCKED`*。ZX_THREAD_STATE_DYING
:线程正在终止过程中,但尚未停止。ZX_THREAD_STATE_DEAD
:线程已停止运行。
当线程在阻塞调用内停止或在异常中停止时,state
中返回的值为以下之一:
ZX_THREAD_STATE_BLOCKED_EXCEPTION
:线程在异常中停止。ZX_THREAD_STATE_BLOCKED_SLEEPING
:线程在zx_nanosleep()
中停止。ZX_THREAD_STATE_BLOCKED_FUTEX
:线程在zx_futex_wait()
中停止。ZX_THREAD_STATE_BLOCKED_PORT
:线程在zx_port_wait()
中停止。ZX_THREAD_STATE_BLOCKED_CHANNEL
:线程在zx_channel_call()
中停止。ZX_THREAD_STATE_BLOCKED_WAIT_ONE
:线程在zx_object_wait_one()
中停止。ZX_THREAD_STATE_BLOCKED_WAIT_MANY
:线程在zx_object_wait_many()
中停止。ZX_THREAD_STATE_BLOCKED_INTERRUPT
:线程在zx_interrupt_wait()
中停止。
各种 ZX_EXCEPTION_CHANNEL_TYPE_
值由以下代码定义
#include <zircon/syscalls/exception.h>
ZX_EXCEPTION_CHANNEL_TYPE_NONE
ZX_EXCEPTION_CHANNEL_TYPE_DEBUGGER
ZX_EXCEPTION_CHANNEL_TYPE_THREAD
ZX_EXCEPTION_CHANNEL_TYPE_PROCESS
ZX_EXCEPTION_CHANNEL_TYPE_JOB
ZX_EXCEPTION_CHANNEL_TYPE_JOB_DEBUGGER
ZX_INFO_THREAD_EXCEPTION_REPORT
handle 类型:Thread
缓冲区类型:zx_exception_report_t[1]
#include <zircon/syscalls/exception.h>
如果线程当前处于异常中并正在等待异常响应,则会以单个 zx_exception_report_t
的形式返回异常报告,其状态为 ZX_OK
。
如果线程未处于异常状态且正在等待异常响应,则返回 ZX_ERR_BAD_STATE
。
ZX_INFO_THREAD_STATS
handle 类型:Thread
buffer 类型:zx_info_thread_stats[1]
typedef struct zx_info_thread_stats {
// Total accumulated running time of the thread.
//
// Note: See zx_info_task_runtime for queue time in addition to runtime.
zx_duration_t total_runtime;
// CPU number that this thread was last scheduled on, or ZX_INFO_INVALID_CPU
// if the thread has never been scheduled on a CPU. By the time this call
// returns, the thread may have been scheduled elsewhere, so this
// information should only be used as a hint or for statistics.
uint32_t last_scheduled_cpu;
} zx_info_thread_stats_t;
如果线程已退出,则返回 ZX_ERR_BAD_STATE
。
ZX_INFO_GUEST_STATS
handle 类型:Resource
(具体来说是 info 资源)
缓冲区类型:zx_info_guest_stats_t[1]
// Each machine has its own format for the same ZX_INFO_GUEST_STATS topic.
// In each build, zx_info_guest_stats_t is a typedef alias for the type.
// Cross-tools can select the machine-specific type to use based on the
// source of the data they are working with.
typedef struct zx_arm64_info_guest_stats {
uint32_t cpu_number;
uint32_t flags;
uint64_t vm_entries;
uint64_t vm_exits;
uint64_t wfi_wfe_instructions;
uint64_t instruction_aborts;
uint64_t data_aborts;
uint64_t system_instructions;
uint64_t smc_instructions;
uint64_t interrupts;
} zx_arm64_info_guest_stats_t;
typedef struct zx_x86_64_info_guest_stats {
uint32_t cpu_number;
uint32_t flags;
uint64_t vm_entries;
uint64_t vm_exits;
uint64_t interrupts;
uint64_t interrupt_windows;
uint64_t cpuid_instructions;
uint64_t hlt_instructions;
uint64_t control_register_accesses;
uint64_t io_instructions;
uint64_t rdmsr_instructions;
uint64_t wrmsr_instructions;
uint64_t ept_violations;
uint64_t xsetbv_instructions;
uint64_t pause_instructions;
uint64_t vmcall_instructions;
} zx_x86_64_info_guest_stats;
ZX_INFO_CPU_STATS
handle 类型:Resource
(具体而言,是 info 资源)
缓冲区类型:zx_info_cpu_stats_t[1]
typedef struct zx_info_cpu_stats {
uint32_t cpu_number;
uint32_t flags;
zx_duration_t idle_time;
// kernel scheduler counters
uint64_t reschedules;
uint64_t context_switches;
uint64_t irq_preempts;
uint64_t preempts;
uint64_t yields;
// cpu level interrupts and exceptions
uint64_t ints; // hardware interrupts, minus timer interrupts
// inter-processor interrupts
uint64_t timer_ints; // timer interrupts
uint64_t timers; // timer callbacks
uint64_t page_faults; // (deprecated, returns 0)
uint64_t exceptions; // (deprecated, returns 0)
uint64_t syscalls;
// inter-processor interrupts
uint64_t reschedule_ipis;
uint64_t generic_ipis;
} zx_info_cpu_stats_t;
ZX_INFO_VMAR
handle 类型:VM Address Region
缓冲区类型:zx_info_vmar_t[1]
typedef struct zx_info_vmar {
// Base address of the region.
uintptr_t base;
// Length of the region, in bytes.
size_t len;
} zx_info_vmar_t;
这会返回一个 zx_info_vmar_t
,用于描述 VMAR 占用的地址空间范围。
ZX_INFO_VMAR_MAPS
handle 类型:Vm Address Region
,使用 ZX_RIGHT_INSPECT
缓冲区类型:zx_info_maps_t[n]
zx_info_maps_t
数组是目标 VMAR 树的深度优先预订遍历。根据预序遍历,基地址将按升序排列。
如需了解 zx_info_maps_t
,请参阅 ZX_INFO_PROCESS_MAPS
。
第一个 zx_info_maps_t
将描述查询的 VMAR。每个条目的 depth 字段描述其与前面的节点的关系。所查询的 VMAR 的深度为 0。所有其他条目的深度均为 1 或更大。
其他错误:
ZX_ERR_ACCESS_DENIED
:缺少适当权限。ZX_ERR_BAD_STATE
:如果 VMAR 或包含 VMAR 的地址空间已被销毁,或者包含 VMAR 的进程已终止。
ZX_INFO_VMO
handle 类型:VM Object
缓冲区类型:zx_info_vmo_t[1]
typedef struct zx_info_vmo {
// The koid of this VMO.
zx_koid_t koid;
// The name of this VMO.
char name[ZX_MAX_NAME_LEN];
// The size of this VMO; i.e., the amount of virtual address space it
// would consume if mapped.
uint64_t size_bytes;
// If this VMO is a child , the koid of its parent. Otherwise, zero.
// See |flags| for the type of child.
zx_koid_t parent_koid;
// The number of children of this VMO, if any.
size_t num_children;
// The number of times this VMO is currently mapped into VMARs.
// Note that the same process will often map the same VMO twice,
// and both mappings will be counted here. (I.e., this is not a count
// of the number of processes that map this VMO; see share_count.)
size_t num_mappings;
// An estimate of the number of unique address spaces that
// this VMO is mapped into. Every process has its own address space,
// and so does the kernel.
size_t share_count;
// Bitwise OR of ZX_INFO_VMO_* values.
uint32_t flags;
// If |ZX_INFO_VMO_TYPE(flags) == ZX_INFO_VMO_TYPE_PAGED|, the amount of
// memory currently allocated to this VMO; i.e., the amount of physical
// memory it consumes. Undefined otherwise.
uint64_t committed_bytes;
// If |flags & ZX_INFO_VMO_VIA_HANDLE|, the handle rights.
//
// If |flags & ZX_INFO_VMO_VIA_IOB_HANDLE|, the effective combined
// handle rights for the IOB region and containing IOB.
//
// Undefined otherwise.
zx_rights_t handle_rights;
// VMO mapping cache policy. One of ZX_CACHE_POLICY_*
uint32_t cache_policy;
// Amount of kernel memory, in bytes, allocated to track metadata
// associated with this VMO.
uint64_t metadata_bytes;
// Running counter of the number of times the kernel, without user request,
// performed actions on this VMO that would have caused |committed_bytes| to
// report a different value.
uint64_t committed_change_events;
// If |ZX_INFO_VMO_TYPE(flags) == ZX_INFO_VMO_TYPE_PAGED|, the amount of
// content that has been populated and is being tracked by this vmo. This
// can be greater than |committed_bytes| where content might be compressed
// or otherwise tracked in a way that does not correlate directly to being
// committed.
uint64_t populated_bytes;
} zx_info_vmo_t;
这会返回一个 zx_info_vmo_t
,用于描述 VMO 的各种属性。
ZX_INFO_SOCKET
handle 类型:Socket
缓冲区类型:zx_info_socket_t[1]
typedef struct zx_info_socket {
// The options passed to zx_socket_create().
uint32_t options;
// The maximum size of the receive buffer of a socket, in bytes.
//
// The receive buffer may become full at a capacity less than the maximum
// due to overhead.
size_t rx_buf_max;
// The size of the receive buffer of a socket, in bytes.
size_t rx_buf_size;
// The amount of data, in bytes, that is available for reading in a single
// zx_socket_read call.
//
// For stream sockets, this value will match |rx_buf_size|. For datagram
// sockets, this value will be the size of the next datagram in the receive
// buffer.
size_t rx_buf_available;
// The maximum size of the transmit buffer of a socket, in bytes.
//
// The transmit buffer may become full at a capacity less than the maximum
// due to overhead.
//
// Will be zero if the peer endpoint is closed.
size_t tx_buf_max;
// The size of the transmit buffer of a socket, in bytes.
//
// Will be zero if the peer endpoint is closed.
size_t tx_buf_size;
} zx_info_socket_t;
ZX_INFO_TIMER
handle 类型:Timer
缓冲区类型:zx_info_timer_t[1]
typedef struct zx_info_timer {
// The options passed to zx_timer_create().
uint32_t options;
// The deadline with respect to ZX_CLOCK_MONOTONIC at which the timer will
// fire next.
//
// This value will be zero if the timer is not set to fire.
zx_time_t deadline;
// Specifies a range from deadline - slack to deadline + slack during which
// the timer is allowed to fire. The system uses this parameter as a hint to
// coalesce nearby timers.
//
// The precise coalescing behavior is controlled by the options parameter
// specified when the timer was created.
//
// This value will be zero if the timer is not set to fire.
zx_duration_t slack;
} zx_info_timer_t;
ZX_INFO_JOB_CHILDREN
handle 类型:Job
缓冲区类型:zx_koid_t[n]
返回一个 zx_koid_t
数组,其中每个 zx_koid_t
对应于所提供作业句柄的每个直接子作业。
ZX_INFO_JOB_PROCESSES
handle 类型:Job
缓冲区类型:zx_koid_t[n]
返回一个 zx_koid_t
数组,其中每个 zx_koid_t
对应于所提供作业句柄的每个直接子进程。
ZX_INFO_TASK_STATS
handle 类型:Process
buffer 类型:zx_info_task_stats_t[1]
返回有关任务使用的资源(例如内存)的统计信息。
typedef struct zx_info_task_stats {
// The total size of mapped memory ranges in the task.
// Not all will be backed by physical memory.
size_t mem_mapped_bytes;
// For the fields below, a byte is considered committed if it's backed by
// physical memory. Some of the memory may be double-mapped, and thus
// double-counted.
// Committed memory that is only mapped into this task.
size_t mem_private_bytes;
// Committed memory that is mapped into this and at least one other task.
size_t mem_shared_bytes;
// A number that estimates the fraction of mem_shared_bytes that this
// task is responsible for keeping alive.
//
// An estimate of:
// For each shared, committed byte:
// mem_scaled_shared_bytes += 1 / (number of tasks mapping this byte)
//
// This number is strictly smaller than mem_shared_bytes.
size_t mem_scaled_shared_bytes;
} zx_info_task_stats_t;
其他错误:
ZX_ERR_BAD_STATE
:如果目标进程已终止
ZX_INFO_TASK_RUNTIME
handle 类型:Job
、Process
或 Thread
缓冲区类型:zx_info_task_runtime_t[1]
返回有关任务运行时的统计信息。
// Info on the runtime of a task.
typedef struct zx_info_task_runtime {
// The total amount of time this task and its children were
// running on a CPU (not blocked).
// * Threads include only their own runtime.
// * Processes include the runtime for all of their threads (including threads that previously
// exited).
// * Jobs include the runtime for all of their processes (including processes that previously
// exited).
zx_duration_t cpu_time;
// The total amount of time this task and its children were queued
// to run (ready) but not actually using a CPU.
// * Threads include only their own queue time.
// * Processes include the queue time for all of their threads (including threads that
// previously exited).
// * Jobs include the queue time for all of their processes (including processes that previously
// exited).
zx_duration_t queue_time;
// The total amount of time this task and its children spent handling page faults.
// * Threads include only their own page fault handling time.
// * Processes include the page fault time for all of their threads (including threads that
// previously exited).
// * Jobs include the page fault time for all of their processes (including processes that
// previously exited).
zx_duration_t page_fault_time;
// The total amount of time this task and its children spent waiting on contended kernel locks.
// * Threads include only their own wait time.
// * Processes include the wait time for all of their threads (including threads that
// previously exited).
// * Jobs include the wait time for all of their processes (including processes that
// previously exited).
zx_duration_t lock_contention_time;
} zx_info_task_runtime_t;
任务的运行时间不包括在挂起或阻塞状态下等待事件或 I/O 所花的时间。这些统计信息可能会用于:
- 估算任务已使用的 CPU 时间。
- 估算任务因其他任务(队列时间)、页面故障处理程序和内核锁争用而导致的延迟时间。
ZX_INFO_PROCESS_MAPS
handle 类型:Process
,包含 ZX_RIGHT_READ
buffer 类型:zx_info_maps_t[n]
zx_info_maps_t
数组是目标进程的 Aspace/VMAR/Mapping 树的深度优先预顺序遍历。根据预序遍历,基地址将按升序排列。
typedef struct zx_info_maps {
// Name if available; empty string otherwise.
char name[ZX_MAX_NAME_LEN];
// Base address.
zx_vaddr_t base;
// Size in bytes.
size_t size;
// The depth of this node in the tree.
// Can be used for indentation, or to rebuild the tree from an array
// of zx_info_maps_t entries, which will be in depth-first pre-order.
size_t depth;
// The type of this entry; indicates which union entry is valid.
uint32_t type; // zx_info_maps_type_t
union {
zx_info_maps_mapping_t mapping;
// No additional fields for other types.
} u;
} zx_info_maps_t;
typedef struct zx_info_maps_mapping {
// MMU flags for the mapping.
// Bitwise OR of ZX_VM_PERM_{READ,WRITE,EXECUTE} values.
zx_vm_option_t mmu_flags;
uint8_t padding1[4];
// koid of the mapped VMO or IOB region.
zx_koid_t vmo_koid;
// Offset into the above VMO or IOB region.
uint64_t vmo_offset;
// The number of PAGE_SIZE pages in the mapped region of the VMO or
// IOB region that are backed by physical memory.
size_t committed_pages;
// The number of PAGE_SIZE pages of content that have been populated and are
// being tracked in the mapped region of the VMO or IOB region. This can be
// greater than |committed_pages| where pages might be compressed or otherwise
// tracked in a way that does not correlate directly to being committed.
size_t populated_pages;
} zx_info_maps_mapping_t;
每个条目的 depth 字段说明了其与前面的节点的关系。深度 0 是根 Aspace,深度 1 是根 VMAR,所有其他条目的深度均为 2 或更大。
要全面了解进程如何使用其 VMO 以及各种进程如何使用 VMO,您可能需要将这些信息与 ZX_INFO_PROCESS_VMOS 结合使用。
如需查看此主题的用户示例,并按 koid 转储任意进程的映射,请参阅 vmaps
命令行工具。
其他错误:
ZX_ERR_ACCESS_DENIED
:缺少适当权限。ZX_ERR_BAD_STATE
:如果目标进程已终止,或者其地址空间已被销毁
ZX_INFO_PROCESS_VMOS
handle 类型:Process
,使用 ZX_RIGHT_READ
缓冲区类型:zx_info_vmo_t[n]
zx_info_vmo_t
数组是目标进程指向的所有 VMO 的列表。有些 VMO 经过映射,有些由 VMO 或 IOB 句柄指向,还有一些则是这些记录的组合。返回的结构体的 flags
字段将指示 ZX_INFO_VMO_VIA_HANDLE、ZX_INFO_VMO_VIA_IOB_HANDLE 或 ZX_INFO_VMO_VIA_MAPPING 之一,以便进行区分。
如需全面了解进程如何使用其 VMO 以及各种进程如何使用 VMO,您可能需要将此信息与 ZX_INFO_PROCESS_MAPS 结合使用。
// Describes a VMO.
typedef struct zx_info_vmo {
// The koid of this VMO.
zx_koid_t koid;
// The name of this VMO.
char name[ZX_MAX_NAME_LEN];
// The size of this VMO; i.e., the amount of virtual address space it
// would consume if mapped.
uint64_t size_bytes;
// If this VMO is a child , the koid of its parent. Otherwise, zero.
// See |flags| for the type of child.
zx_koid_t parent_koid;
// The number of children of this VMO, if any.
size_t num_children;
// The number of times this VMO is currently mapped into VMARs.
// Note that the same process will often map the same VMO twice,
// and both mappings will be counted here. (I.e., this is not a count
// of the number of processes that map this VMO; see share_count.)
size_t num_mappings;
// An estimate of the number of unique address spaces that
// this VMO is mapped into. Every process has its own address space,
// and so does the kernel.
size_t share_count;
// Bitwise OR of ZX_INFO_VMO_* values.
uint32_t flags;
// If |ZX_INFO_VMO_TYPE(flags) == ZX_INFO_VMO_TYPE_PAGED|, the amount of
// memory currently allocated to this VMO; i.e., the amount of physical
// memory it consumes. Undefined otherwise.
uint64_t committed_bytes;
// If |flags & ZX_INFO_VMO_VIA_HANDLE|, the handle rights.
//
// If |flags & ZX_INFO_VMO_VIA_IOB_HANDLE|, the effective combined
// handle rights for the IOB region and containing IOB.
//
// Undefined otherwise.
zx_rights_t handle_rights;
// VMO mapping cache policy. One of ZX_CACHE_POLICY_*
uint32_t cache_policy;
// Amount of kernel memory, in bytes, allocated to track metadata
// associated with this VMO.
uint64_t metadata_bytes;
// Running counter of the number of times the kernel, without user request,
// performed actions on this VMO that would have caused |committed_bytes| to
// report a different value.
uint64_t committed_change_events;
// If |ZX_INFO_VMO_TYPE(flags) == ZX_INFO_VMO_TYPE_PAGED|, the amount of
// content that has been populated and is being tracked by this vmo. This
// can be greater than |committed_bytes| where content might be compressed
// or otherwise tracked in a way that does not correlate directly to being
// committed.
uint64_t populated_bytes;
} zx_info_vmo_t;
如需查看此主题的用户示例,并按 koid 转储任意进程的 VMO,请参阅 vmos
命令行工具。
ZX_INFO_KMEM_STATS
handle 类型:Resource
(具体而言,是 info 资源)
缓冲区类型:zx_info_kmem_stats_t[1]
返回内核看到的内存用量信息。
typedef struct zx_info_kmem_stats {
// The total amount of physical memory available to the system.
// Note, the values below may not exactly add up to this total.
uint64_t total_bytes;
// The amount of unallocated memory available for general use. This is a
// subset of |total_bytes|.
uint64_t free_bytes;
// The amount of unallocated memory loaned from VMOs that is available for
// allocations that support loaned memory. This is a subset of
// |total_bytes| and does not overlap with |free_bytes|.
uint64_t free_loaned_bytes;
// The amount of memory reserved by and mapped into the kernel for reasons
// not covered by other fields in this struct. Typically for readonly data
// like the ram disk and kernel image, and for early-boot dynamic memory.
// This value of this field should not typically change post boot and is a
// subset of |total_bytes|.
uint64_t wired_bytes;
// The amount of memory allocated to the general kernel heap. This is a
// subset of |total_bytes|.
uint64_t total_heap_bytes;
// The portion of |total_heap_bytes| that is not holding an allocated
// object.
uint64_t free_heap_bytes;
// The amount of memory committed to VMOs created by both kernel and user.
// Does not include certain VMOs that fall under |wired_bytes|. This is a
// subset of |total_bytes|.
uint64_t vmo_bytes;
// The amount of memory used for architecture-specific MMU metadata
// like page tables for both kernel and user mappings. This is a subset of
// |total_bytes|.
uint64_t mmu_overhead_bytes;
// The amount of memory in use by IPC. This is a subset of |total_bytes|.
uint64_t ipc_bytes;
// The amount of memory in use by kernel allocation caches. This memory is
// not allocated, but is only available for use for specific kernel
// allocation requests. This is a subset of |total_bytes|.
uint64_t cache_bytes;
// The amount of memory in use by the kernel in slab allocators for kernel
// objects. Unlike the heap there is no measurement for the amount of slab
// memory that is not presently in use. This is a subset of |total_bytes|.
uint64_t slab_bytes;
// The amount of memory in use for storing compressed data that would
// otherwise be part of VMOs.
// Use ZX_INFO_KMEM_STATS_COMPRESSION for more details. This is a subset of
// |total_bytes|.
uint64_t zram_bytes;
// Non-free memory that isn't accounted for in any other field. This is a
// subset of |total_bytes|.
uint64_t other_bytes;
// The amount of memory committed to VMOs that is reclaimable by the kernel.
// This is a subset of |vmo_bytes|.
uint64_t vmo_reclaim_total_bytes;
// The amount of memory committed to reclaimable VMOs, that has been most
// recently accessed, and would not be eligible for eviction by the kernel
// under memory pressure. This is a subset of |vmo_reclaim_total_bytes|.
uint64_t vmo_reclaim_newest_bytes;
// The amount of memory committed to reclaimable VMOs, that has been least
// recently accessed, and would be the first to be evicted by the kernel
// under memory pressure. This is a subset of |reclaim_total_bytes|.
uint64_t vmo_reclaim_oldest_bytes;
// The amount of memory in VMOs that would otherwise be tracked for
// reclamation, but has had reclamation disabled. This is a subset of
// |vmo_bytes|.
uint64_t vmo_reclaim_disabled_bytes;
// The amount of memory committed to discardable VMOs that is currently
// locked, or unreclaimable by the kernel under memory pressure. This is a
// subset of |vmo_bytes| and some of this count may be included in any other
// |vmo_reclaim_*| count.
uint64_t vmo_discardable_locked_bytes;
// The amount of memory committed to discardable VMOs that is currently
// unlocked, or reclaimable by the kernel under memory pressure. This is a
// subset of |vmo_bytes| and some of this count may be included in any other
// |vmo_reclaim_*| count
uint64_t vmo_discardable_unlocked_bytes;
} zx_info_kmem_stats_t;
ZX_INFO_KMEM_STATS_COMPRESSION
handle 类型:Resource
(具体而言,是 info 资源)
buffer 类型:zx_info_kmem_stats_compression_t[1]
返回与内核压缩内存子系统相关的内存用量信息。
typedef struct zx_info_kmem_stats_compression {
// Size in bytes of the content that is currently being compressed and stored.
uint64_t uncompressed_storage_bytes;
// Size in bytes of all memory, including metadata, fragmentation and other
// overheads, of the compressed memory area. Note that due to base book
// keeping overhead this could be non-zero, even when
// |uncompressed_content_bytes| is zero.
uint64_t compressed_storage_bytes;
// Size in bytes of any fragmentation in the compressed memory area.
uint64_t compressed_fragmentation_bytes;
// Total amount of CPU time spent on compression across all threads.
// Compression may happen in parallel and so this can be larger than
// wall clock time.
zx_duration_t compression_time;
// Total amount of time decompression has spent on a CPU across all threads.
// Decompression may happen in parallel and so this can increase faster than
// wall clock time.
zx_duration_t decompression_time;
// Total number of times compression has been done on a page, regardless of
// whether the compressed result was ultimately retained.
uint64_t total_page_compression_attempts;
// How many of the total compression attempts were considered failed and
// were not stored. An example reason for failure would be a page not being
// compressed sufficiently to be considered worth storing.
uint64_t failed_page_compression_attempts;
// Number of times pages have been decompressed.
uint64_t total_page_decompressions;
// Number of times a page was removed from storage without needing to be
// decompressed. An example that would cause this is a VMO being destroyed.
uint64_t compressed_page_evictions;
// How many pages compressed due to the page being inactive, but without
// there being memory pressure.
uint64_t eager_page_compressions;
// How many pages compressed due to general memory pressure. This excludes pages
// compressed due to critical memory pressure.
uint64_t memory_pressure_page_compressions;
// How many pages compressed due to attempting to avoid OOM or near OOM
// scenarios.
uint64_t critical_memory_page_compressions;
// The nanoseconds in the base unit of time for
// |pages_decompressed_within_log_time|.
uint64_t pages_decompressed_unit_ns;
// How long pages spent compressed before being decompressed, grouped in log
// buckets. Pages that got evicted, and hence were not decompressed, are not
// counted here. Buckets are in |pages_decompressed_unit_ns| and round up
// such that:
// 0: Pages decompressed in <1 unit
// 1: Pages decompressed between 1 and 2 units
// 2: Pages decompressed between 2 and 4 units
// ...
// 7: Pages decompressed between 64 and 128 units
// How many pages are held compressed for longer than 128 units can be
// inferred by subtracting from |total_page_decompressions|.
uint64_t pages_decompressed_within_log_time[8];
} zx_info_kmem_stats_compression_t;
ZX_INFO_RESOURCE
handle 类型:Resource
buffer 类型:zx_info_resource_t[1]
通过资源对象的句柄返回资源对象的相关信息。
typedef struct zx_info_resource {
// The resource kind; resource object kinds are described in resource.md
uint32_t kind;
// Resource's creation flags
uint32_t flags;
// Resource's base value (inclusive)
uint64_t base;
// Resource's length value
size_t size;
char name[ZX_MAX_NAME_LEN];
} zx_info_resource_t;
资源种类是以下各项之一
ZX_RSRC_KIND_ROOT
ZX_RSRC_KIND_MMIO
ZX_RSRC_KIND_IOPORT
ZX_RSRC_KIND_IRQ
ZX_RSRC_KIND_SMC
ZX_RSRC_KIND_SYSTEM
ZX_INFO_BTI
handle 类型:Bus Transaction Initiator
buffer 类型:zx_info_bti_t[1]
typedef struct zx_info_bti {
// zx_bti_pin will always be able to return addresses that are contiguous for at
// least this many bytes. E.g. if this returns 1MB, then a call to
// zx_bti_pin() with a size of 2MB will return at most two physically-contiguous runs.
// If the size were 2.5MB, it will return at most three physically-contiguous runs.
uint64_t minimum_contiguity;
// The number of bytes in the device's address space (UINT64_MAX if 2^64).
uint64_t aspace_size;
// The count of the pinned memory object tokens. Requesting this count is
// racy, so this should only be used for informative reasons.
uint64_t pmo_count;
// The count of the quarantined pinned memory object tokens. Requesting this count is
// racy, so this should only be used for informative reasons.
uint64_t quarantine_count;
} zx_info_bti_t;
主题 ZX_INFO_IOB
handle 类型:IOBuffer
缓冲区类型:zx_info_iob_t[1]
返回有关整个 IOB 实例的信息。
typedef struct zx_info_iob {
// The value of the *options* parameter passed to `zx_iob_create`.
uint64_t options;
// The number of regions in the IOB.
uint32_t region_count;
// Reserved for future extensions.
uint8_t padding[4];
} zx_info_iob_t;
主题 ZX_INFO_IOB_REGIONS
以 zx_iob_region_info_t
数组的形式返回 IOB 的每个区域的信息
handle 类型:IOBuffer
缓冲区类型:zx_iob_region_info_t[n]
struct zx_iob_region_info_t {
/// The region description, with potentially swapped access bits.
zx_iob_region_t region;
/// The koid of the underlying memory object.
zx_koid_t koid;
};
访问修饰符位会进行交换,以便 Ep0 访问位反映发出查询的端点的访问权限,而 Ep1 位反映另一个端点的访问权限,这样无需知道哪些句柄在创建时是 Ep0 和 Ep1,便可确定本地和远程句柄的访问权限。
ZX_INFO_POWER_DOMAINS
以 zx_power_domain_info_t
数组的形式返回每个已注册电源域的信息
handle 类型:Resource
(具体而言,是 info 资源)
缓冲区类型:zx_power_domain_info_t[n]
typedef struct zx_power_domain_info {
/// CPUs part of this power domain.
zx_cpu_set_t cpus;
/// Id of the power domain.
uint32_t domain_id;
/// Number of idle power levels in this power domain.
uint8_t idle_power_levels;
/// Number of active power levels in this power domain.
uint8_t active_power_levels;
uint8_t padding1[2];
} zx_power_domain_info_t;
权限
如果主题为 ZX_INFO_PROCESS
,则句柄必须为 ZX_OBJ_TYPE_PROCESS
类型且具有 ZX_RIGHT_INSPECT
。
如果 topic 为 ZX_INFO_JOB
,则 handle 的类型必须为 ZX_OBJ_TYPE_JOB
且具有 ZX_RIGHT_INSPECT
。
如果 topic 为 ZX_INFO_PROCESS_THREADS
,则 handle 的类型必须为 ZX_OBJ_TYPE_PROCESS
且具有 ZX_RIGHT_ENUMERATE
。
如果主题为 ZX_INFO_JOB_CHILDREN
,则句柄必须为 ZX_OBJ_TYPE_JOB
类型且具有 ZX_RIGHT_ENUMERATE
。
如果主题为 ZX_INFO_JOB_PROCESSES
,则句柄必须为 ZX_OBJ_TYPE_JOB
类型且具有 ZX_RIGHT_ENUMERATE
。
如果主题为 ZX_INFO_THREAD
,则句柄必须为 ZX_OBJ_TYPE_THREAD
类型且具有 ZX_RIGHT_INSPECT
。
如果 topic 为 ZX_INFO_THREAD_EXCEPTION_REPORT
,则 handle 的类型必须为 ZX_OBJ_TYPE_THREAD
且具有 ZX_RIGHT_INSPECT
。
如果 topic 为 ZX_INFO_THREAD_STATS
,则 handle 的类型必须为 ZX_OBJ_TYPE_THREAD
且具有 ZX_RIGHT_INSPECT
。
如果 topic 为 ZX_INFO_TASK_STATS
,则 handle 的类型必须为 ZX_OBJ_TYPE_PROCESS
且具有 ZX_RIGHT_INSPECT
。
如果 topic 为 ZX_INFO_PROCESS_MAPS
,则 handle 的类型必须为 ZX_OBJ_TYPE_PROCESS
且具有 ZX_RIGHT_INSPECT
。
如果主题为 ZX_INFO_PROCESS_VMOS
,则句柄必须为 ZX_OBJ_TYPE_PROCESS
类型且具有 ZX_RIGHT_INSPECT
。
如果 topic 为 ZX_INFO_VMO
,则 handle 的类型必须为 ZX_OBJ_TYPE_VMO
。
如果主题为 ZX_INFO_VMAR
,则句柄必须为 ZX_OBJ_TYPE_VMAR
类型且具有 ZX_RIGHT_INSPECT
。
如果主题为 ZX_INFO_VMAR_MAPS
,则句柄必须为 ZX_OBJ_TYPE_VMAR
类型且具有 ZX_RIGHT_INSPECT
。
如果 topic 为 ZX_INFO_GUEST_STATS
,handle 必须具有基本 ZX_RSRC_SYSTEM_INFO_BASE
的资源种类 ZX_RSRC_KIND_SYSTEM
。
如果主题为 ZX_INFO_CPU_STATS
,句柄必须具有资源类型 ZX_RSRC_KIND_SYSTEM
和基础 ZX_RSRC_SYSTEM_INFO_BASE
。
如果主题为 ZX_INFO_KMEM_STATS
,句柄必须具有资源类型 ZX_RSRC_KIND_SYSTEM
和基础 ZX_RSRC_SYSTEM_INFO_BASE
。
如果主题为 ZX_INFO_KMEM_STATS_EXTENDED
,句柄必须具有资源类型 ZX_RSRC_KIND_SYSTEM
和基础 ZX_RSRC_SYSTEM_INFO_BASE
。
如果主题为 ZX_INFO_RESOURCE
,则句柄必须为 ZX_OBJ_TYPE_RESOURCE
类型且具有 ZX_RIGHT_INSPECT
。
如果主题为 ZX_INFO_HANDLE_COUNT
,句柄必须包含 ZX_RIGHT_INSPECT
。
如果主题为 ZX_INFO_BTI
,则句柄必须为 ZX_OBJ_TYPE_BTI
类型且具有 ZX_RIGHT_INSPECT
。
如果主题为 ZX_INFO_PROCESS_HANDLE_STATS
,则句柄必须为 ZX_OBJ_TYPE_PROCESS
类型且具有 ZX_RIGHT_INSPECT
。
如果主题为 ZX_INFO_SOCKET
,则句柄必须为 ZX_OBJ_TYPE_SOCKET
类型且具有 ZX_RIGHT_INSPECT
。
如果 topic 为 ZX_INFO_MSI
,则 handle 的类型必须为 ZX_OBJ_TYPE_MSI
且具有 ZX_RIGHT_INSPECT
。
如果主题为 ZX_INFO_TASK_RUNTIME
,标识名的类型必须为 ZX_OBJ_TYPE_THREAD
、ZX_OBJ_TYPE_PROCESS
或 ZX_OBJ_TYPE_JOB
,并且具有 ZX_RIGHT_INSPECT
。
如果主题为 ZX_INFO_POWER_DOMAINS
,句柄必须具有资源类型 ZX_RSRC_KIND_SYSTEM
和基础 ZX_RSRC_SYSTEM_INFO_BASE
。
返回值
zx_object_get_info()
会在成功时返回 ZX_OK
。如果失败,则返回负错误值。
错误
ZX_ERR_BAD_HANDLE
handle 不是有效的 handle。
ZX_ERR_WRONG_TYPE
handle 不是topic 的适当类型
ZX_ERR_ACCESS_DENIED
:如果 handle 不具备执行相应操作所需的权限。
ZX_ERR_INVALID_ARGS
buffer、actual 或 avail 是无效的指针。
ZX_ERR_NO_MEMORY
因内存不足而失败。用户空间没有很好的方法来处理这种(不太可能发生的)错误。在未来的 build 中,此错误将不再出现。
ZX_ERR_BUFFER_TOO_SMALL
主题会返回固定数量的记录,但提供的缓冲区不足以存储这些记录。
ZX_ERR_NOT_SUPPORTED
topic 不存在。
示例
bool is_handle_valid(zx_handle_t handle) {
return zx_object_get_info(
handle, ZX_INFO_HANDLE_VALID, NULL, 0, NULL, NULL) == ZX_OK;
}
zx_koid_t get_object_koid(zx_handle_t handle) {
zx_info_handle_basic_t info;
if (zx_object_get_info(handle, ZX_INFO_HANDLE_BASIC,
&info, sizeof(info), NULL, NULL) != ZX_OK) {
return 0;
}
return info.koid;
}
void examine_threads(zx_handle_t proc) {
zx_koid_t threads[128];
size_t count, avail;
if (zx_object_get_info(proc, ZX_INFO_PROCESS_THREADS, threads,
sizeof(threads), &count, &avail) != ZX_OK) {
// Error!
} else {
if (avail > count) {
// More threads than space in array;
// could call again with larger array.
}
for (size_t n = 0; n < count; n++) {
do_something(thread[n]);
}
}
}