下列各節將探討一種可能的疊代方式,以原始鍵/值存放區設計為基礎,具體來說:
每個案例都提供獨立的方式,可修改或改善基本案例中呈現的基本案例,而非依序建構。
本頁面以鍵/值儲存區基準範例為基礎。
新增從商店讀取的支援
推理
現在,原始的唯寫鍵/值儲存庫已擴充,可從儲存庫讀取項目。
實作
FIDL 和 CML 定義的變更如下:
FIDL
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. library examples.keyvaluestore.addreaditem; // Aliases for the key and value. Using aliases helps increase the readability of FIDL files and // reduces likelihood of errors due to differing constraints. alias Key = string:128; alias Value = vector<byte>:64000; /// An item in the store. The key must match the regex `^[A-z][A-z0-9_\.\/]{2,62}[A-z0-9]$`. That /// is, it must start with a letter, end with a letter or number, contain only letters, numbers, /// periods, and slashes, and be between 4 and 64 characters long. type Item = struct { key Key; value Value; }; /// An enumeration of things that may go wrong when trying to write a value to our store. type WriteError = flexible enum { UNKNOWN = 1; // Avoid 0 in errors as it may be confused with success. INVALID_KEY = 2; INVALID_VALUE = 3; ALREADY_EXISTS = 4; }; /// An enumeration of things that may go wrong when trying to read a value out of our store. type ReadError = flexible enum { UNKNOWN = 1; // Avoid 0 in errors as it may be confused with success. NOT_FOUND = 2; }; /// A very basic key-value store - so basic, in fact, that one may only write to it, never read! @discoverable open protocol Store { /// Writes an item to the store. flexible WriteItem(struct { attempt Item; }) -> () error WriteError; /// Reads an item from the store. flexible ReadItem(struct { key Key; }) -> (Item) error ReadError; };
CML
用戶端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { include: [ "syslog/client.shard.cml" ], program: { runner: "elf", binary: "bin/client_bin", }, use: [ { protocol: "examples.keyvaluestore.addreaditem.Store" }, ], config: { write_items: { type: "vector", max_count: 16, element: { type: "string", max_size: 64, }, }, read_items: { type: "vector", max_count: 16, element: { type: "string", max_size: 64, }, }, }, }
伺服器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { include: [ "syslog/client.shard.cml" ], program: { runner: "elf", binary: "bin/server_bin", }, capabilities: [ { protocol: "examples.keyvaluestore.addreaditem.Store" }, ], expose: [ { protocol: "examples.keyvaluestore.addreaditem.Store", from: "self", }, ], }
運作範圍
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { children: [ { name: "client", url: "#meta/client.cm", }, { name: "server", url: "#meta/server.cm", }, ], offer: [ // Route the protocol under test from the server to the client. { protocol: "examples.keyvaluestore.addreaditem.Store", from: "#server", to: "#client", }, // Route diagnostics support to all children. { dictionary: "diagnostics", from: "parent", to: [ "#client", "#server", ], }, ], }
所有語言的用戶端和伺服器實作項目也會隨之變更:
荒漠油廠
用戶端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. use anyhow::{Context as _, Error}; use config::Config; use fidl_examples_keyvaluestore_addreaditem::{Item, StoreMarker}; use fuchsia_component::client::connect_to_protocol; use std::{str, thread, time}; #[fuchsia::main] async fn main() -> Result<(), Error> { println!("Started"); // Load the structured config values passed to this component at startup. let config = Config::take_from_startup_handle(); // Use the Component Framework runtime to connect to the newly spun up server component. We wrap // our retained client end in a proxy object that lets us asynchronously send `Store` requests // across the channel. let store = connect_to_protocol::<StoreMarker>()?; println!("Outgoing connection enabled"); // This client's structured config has one parameter, a vector of strings. Each string is the // path to a resource file whose filename is a key and whose contents are a value. We iterate // over them and try to write each key-value pair to the remote store. for key in config.write_items.into_iter() { let path = format!("/pkg/data/{}.txt", key); let value = std::fs::read_to_string(path.clone()) .with_context(|| format!("Failed to load {path}"))?; match store.write_item(&Item { key: key, value: value.into_bytes() }).await? { Ok(_) => println!("WriteItem Success"), Err(err) => println!("WriteItem Error: {}", err.into_primitive()), } } // The structured config for this client contains `read_items`, a vector of strings, each of // which is meant to be read from the key-value store. We iterate over these keys, attempting to // read them in turn. for key in config.read_items.into_iter() { let res = store.read_item(key.as_str()).await; match res.unwrap() { Ok(val) => { println!("ReadItem Success: key: {}, value: {}", key, str::from_utf8(&val.1)?) } Err(err) => println!("ReadItem Error: {}", err.into_primitive()), } } // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the // referenced bug has been resolved, we can remove the sleep. thread::sleep(time::Duration::from_secs(2)); Ok(()) }
伺服器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. use { anyhow::{Context as _, Error}, fidl_examples_keyvaluestore_addreaditem::{ Item, ReadError, StoreRequest, StoreRequestStream, WriteError, }, fuchsia_component::server::ServiceFs, futures::prelude::*, regex::Regex, std::cell::RefCell, std::collections::HashMap, std::collections::hash_map::Entry, std::sync::LazyLock, }; static KEY_VALIDATION_REGEX: LazyLock<Regex> = LazyLock::new(|| { Regex::new(r"^[A-Za-z][A-Za-z0-9_\./]{2,62}[A-Za-z0-9]$") .expect("Key validation regex failed to compile") }); /// Handler for the `WriteItem` method. fn write_item(store: &mut HashMap<String, Vec<u8>>, attempt: Item) -> Result<(), WriteError> { // Validate the key. if !KEY_VALIDATION_REGEX.is_match(attempt.key.as_str()) { println!("Write error: INVALID_KEY, For key: {}", attempt.key); return Err(WriteError::InvalidKey); } // Validate the value. if attempt.value.is_empty() { println!("Write error: INVALID_VALUE, For key: {}", attempt.key); return Err(WriteError::InvalidValue); } // Write to the store, validating that the key did not already exist. match store.entry(attempt.key) { Entry::Occupied(entry) => { println!("Write error: ALREADY_EXISTS, For key: {}", entry.key()); Err(WriteError::AlreadyExists) } Entry::Vacant(entry) => { println!("Wrote value at key: {}", entry.key()); entry.insert(attempt.value); Ok(()) } } } /// Creates a new instance of the server. Each server has its own bespoke, per-connection instance /// of the key-value store. async fn run_server(stream: StoreRequestStream) -> Result<(), Error> { // Create a new in-memory key-value store. The store will live for the lifetime of the // connection between the server and this particular client. let store = RefCell::new(HashMap::<String, Vec<u8>>::new()); // Serve all requests on the protocol sequentially - a new request is not handled until its // predecessor has been processed. stream .map(|result| result.context("failed request")) .try_for_each(|request| async { // Match based on the method being invoked. match request { StoreRequest::WriteItem { attempt, responder } => { println!("WriteItem request received"); // The `responder` parameter is a special struct that manages the outgoing reply // to this method call. Calling `send` on the responder exactly once will send // the reply. responder .send(write_item(&mut store.borrow_mut(), attempt)) .context("error sending reply")?; println!("WriteItem response sent"); } StoreRequest::ReadItem { key, responder } => { println!("ReadItem request received"); // Read the item from the store, returning the appropriate error if it could not be found. responder .send(match store.borrow().get(&key) { Some(found) => { println!("Read value at key: {}", key); Ok((&key, found)) } None => { println!("Read error: NOT_FOUND, For key: {}", key); Err(ReadError::NotFound) } }) .context("error sending reply")?; println!("ReadItem response sent"); } // StoreRequest::_UnknownMethod { ordinal, .. } => { println!("Received an unknown method with ordinal {ordinal}"); } } Ok(()) }) .await } // A helper enum that allows us to treat a `Store` service instance as a value. enum IncomingService { Store(StoreRequestStream), } #[fuchsia::main] async fn main() -> Result<(), Error> { println!("Started"); // Add a discoverable instance of our `Store` protocol - this will allow the client to see the // server and connect to it. let mut fs = ServiceFs::new_local(); fs.dir("svc").add_fidl_service(IncomingService::Store); fs.take_and_serve_directory_handle()?; println!("Listening for incoming connections"); // The maximum number of concurrent clients that may be served by this process. const MAX_CONCURRENT: usize = 10; // Serve each connection simultaneously, up to the `MAX_CONCURRENT` limit. fs.for_each_concurrent(MAX_CONCURRENT, |IncomingService::Store(stream)| { run_server(stream).unwrap_or_else(|e| println!("{:?}", e)) }) .await; Ok(()) }
C++ (Natural)
用戶端
// TODO(https://fxbug.dev/42060656): C++ (Natural) implementation.伺服器
// TODO(https://fxbug.dev/42060656): C++ (Natural) implementation.C++ (Wire)
用戶端
// TODO(https://fxbug.dev/42060656): C++ (Wire) implementation.伺服器
// TODO(https://fxbug.dev/42060656): C++ (Wire) implementation.使用一般值
推理
鍵/值儲存庫基準範例的實作方式是不錯的起點,但主要缺點是資料會儲存為原始位元組。FIDL 是型別豐富的語言,強制將資料 (例如 UTF-8 字串) 儲存為未輸入型別的位元組陣列,會清除 *.fidl 檔案讀取器和使用從該檔案產生的繫結的程式設計師,所用的寶貴型別資訊。
實作
這項變更的主要目標,是將基準案例的vector<byte>
型別 value 成員替換為儲存多種可能型別的 union。事實上,自這項變更起,我們提供了一份 FIDL 值型別的良好調查:
- 所有 FIDL 的內建純量型別都會做為
Valueunion中的變體:bool、uint8、uint16、uint32、uint64、int8、int16、int32、int64、float32和float64(也稱為 FIDL 的基本型別),以及string。 - 這個
union也會使用 FIDL 的內建array<T, N>和vector<T>型別範本。 - 本範例至少會使用一次所有 FIDL 的型別版面配置,也就是
bits、enum、table、union和struct。
用於 WriteItem 的要求和回應酬載也已從 struct 變更為具名 table 和內嵌 flexible union。事實上,這三種版面配置都可用於要求/回應酬載。後兩者分別稱為「資料表酬載」和「聯集酬載」,除了對訊息大小非常敏感的情況外,建議一律使用這兩種酬載。因為日後可以更輕鬆地以二進位檔相容的方式擴充。
FIDL
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. library examples.keyvaluestore.usegenericvalues; /// An item in the store. The key must match the regex `^[A-z][A-z0-9_\.\/]{2,62}[A-z0-9]$`. That /// is, it must start with a letter, end with a letter or number, contain only letters, numbers, /// periods, and slashes, and be between 4 and 64 characters long. type Item = struct { key string:128; value Value; }; // Because the `Value` must be used both in the request and the response, we give it its own named // type. The type is a `union` of all possible data types that we take as values, and is marked // `flexible` to allow for the easy addition of new data types in the future. type Value = flexible union { // Keep the original `bytes` as one of the options in the new union. 1: bytes vector<byte>:64000; // A `string` is very similar to `vector<byte>` on the wire, with the extra constraint that // it enforces that it enforces that the byte vector in question is valid UTF-8. 2: string string:64000; // All of FIDL's primitive types. 3: bool bool; 4: uint8 uint8; 5: int8 int8; 6: uint16 uint16; 7: int16 int16; 8: uint32 uint32; 9: int32 int32; 10: float32 float32; 11: uint64 uint64; 12: int64 int64; 13: float64 float64; // FIDL does not natively support 128-bit integer types, so we have to define our own // representations. 14: uint128 array<uint64, 2>; }; // Because we now supoprt a richer range of types as values in our store, it is helpful to use a // `flexible`, and therefore evolvable, `bits` type to store write options. type WriteOptions = flexible bits : uint8 { // This flag allows us to overwrite existing data when there is a collision, rather than failing // with an `WriteError.ALREADY_EXISTS`. OVERWRITE = 0b1; // This flag allows us to concatenate to existing data when there is a collision, rather than // failing with an `WriteError.ALREADY_EXISTS`. "Concatenation" means addition for the numeric // variants and appending to the `bytes`/`string` variants. If no existing data can be found, we // "concatenate" to default values of zero and an empty vector, respectively. Attempting to // concatenate to an existing variant of a different type will return a // `WriteError.INVALID_VALUE` error. CONCAT = 0b10; }; /// An enumeration of things that may go wrong when trying to write a value to our store. type WriteError = flexible enum { UNKNOWN = 0; INVALID_KEY = 1; INVALID_VALUE = 2; ALREADY_EXISTS = 3; }; /// A very basic key-value store. @discoverable open protocol Store { /// Writes an item to the store. /// /// Since the value stored in the key-value store can now be different from the input (if the /// `WriteOptions.CONCAT` flag is set), we need to return the resulting `Value` to the /// requester. /// /// We use an (anonymous) `table` and a (named) `flexible union` as the request and response /// payload, respectively, to allow for easier future evolution. Both of these types are /// `flexible`, meaning that adding or removing members is binary-compatible. This makes them /// much easier to evolve that the `struct` types that were previously used, which cannot be /// changed after release without breaking ABI. flexible WriteItem(table { 1: attempt Item; 2: options WriteOptions; }) -> (Value) error WriteError; };
CML
用戶端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { include: [ "syslog/client.shard.cml" ], program: { runner: "elf", binary: "bin/client_bin", }, use: [ { protocol: "examples.keyvaluestore.usegenericvalues.Store" }, ], config: { // A vector of values for every easily representible type in our key-value store. For // brevity's sake, the 8, 16, and 32 bit integer types and booleans are omitted. // // TODO(https://fxbug.dev/42178362): It would absolve individual language implementations of a great // deal of string parsing if we were able to use all FIDL constructs directly here. In // particular, floats and nested types are very difficult to represent, and have been // excluded from this example for the time being. set_concat_option: { type: "bool" }, set_overwrite_option: { type: "bool" }, write_bytes: { type: "vector", max_count: 16, element: { type: "string", max_size: 64, }, }, write_strings: { type: "vector", max_count: 16, element: { type: "string", max_size: 64, }, }, write_uint64s: { type: "vector", max_count: 16, element: { type: "uint64" }, }, write_int64s: { type: "vector", max_count: 16, element: { type: "int64" }, }, // Note: due to the limitation of structured config not allowing vectors nested in vectors, // we only set the lower half of the uint128 for simplicity's sake. write_uint128s: { type: "vector", max_count: 16, element: { type: "uint64" }, }, }, }
伺服器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { include: [ "syslog/client.shard.cml" ], program: { runner: "elf", binary: "bin/server_bin", }, capabilities: [ { protocol: "examples.keyvaluestore.usegenericvalues.Store" }, ], expose: [ { protocol: "examples.keyvaluestore.usegenericvalues.Store", from: "self", }, ], }
運作範圍
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { children: [ { name: "client", url: "#meta/client.cm", }, { name: "server", url: "#meta/server.cm", }, ], offer: [ // Route the protocol under test from the server to the client. { protocol: "examples.keyvaluestore.usegenericvalues.Store", from: "#server", to: "#client", }, // Route diagnostics support to all children. { dictionary: "diagnostics", from: "parent", to: [ "#client", "#server", ], }, ], }
接著,您可以使用任何支援的語言編寫用戶端和伺服器實作項目:
荒漠油廠
用戶端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. use { anyhow::{Context as _, Error}, config::Config, fidl_examples_keyvaluestore_usegenericvalues::{ Item, StoreMarker, StoreProxy, StoreWriteItemRequest, Value, WriteOptions, }, fuchsia_component::client::connect_to_protocol, std::{thread, time}, }; // A helper function to sequentially write a single item to the key-value store and print a log when // successful. async fn write_next_item( store: &StoreProxy, key: &str, value: Value, options: WriteOptions, ) -> Result<(), Error> { // Create an empty request payload using `::default()`. let mut req = StoreWriteItemRequest::default(); req.options = Some(options); // Fill in the `Item` we will be attempting to write. println!("WriteItem request sent: key: {}, value: {:?}", &key, &value); req.attempt = Some(Item { key: key.to_string(), value: value }); // Send and async `WriteItem` request to the server. match store.write_item(&req).await.context("Error sending request")? { Ok(value) => println!("WriteItem response received: {:?}", &value), Err(err) => println!("WriteItem Error: {}", err.into_primitive()), } Ok(()) } #[fuchsia::main] async fn main() -> Result<(), Error> { println!("Started"); // Load the structured config values passed to this component at startup. let config = Config::take_from_startup_handle(); // Use the Component Framework runtime to connect to the newly spun up server component. We wrap // our retained client end in a proxy object that lets us asynchronously send `Store` requests // across the channel. let store = connect_to_protocol::<StoreMarker>()?; println!("Outgoing connection enabled"); // All of our requests will have the same bitflags set. Pull these settings from the config. let mut options = WriteOptions::empty(); options.set(WriteOptions::OVERWRITE, config.set_overwrite_option); options.set(WriteOptions::CONCAT, config.set_concat_option); // The structured config provides one input for most data types that can be stored in the data // store. Iterate through those inputs in the order we see them in the FIDL file. // // Note that FIDL unions are rendered as enums in Rust; for example, the `Value` union has now // become a `Value` Rust enum, with each member taking exactly one argument. for value in config.write_bytes.into_iter() { write_next_item(&store, "bytes", Value::Bytes(value.into()), options).await?; } for value in config.write_strings.into_iter() { write_next_item(&store, "string", Value::String(value), options).await?; } for value in config.write_uint64s.into_iter() { write_next_item(&store, "uint64", Value::Uint64(value), options).await?; } for value in config.write_int64s.into_iter() { write_next_item(&store, "int64", Value::Int64(value), options).await?; } for value in config.write_uint128s.into_iter() { write_next_item(&store, "uint128", Value::Uint128([0, value]), options).await?; } // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the // referenced bug has been resolved, we can remove the sleep. thread::sleep(time::Duration::from_secs(2)); Ok(()) }
伺服器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. use anyhow::{Context as _, Error}; use fuchsia_component::server::ServiceFs; use futures::prelude::*; use regex::Regex; use std::cell::RefCell; use std::collections::HashMap; use std::collections::hash_map::Entry; use std::sync::LazyLock; use fidl_examples_keyvaluestore_usegenericvalues::{ Item, StoreRequest, StoreRequestStream, Value, WriteError, WriteOptions, }; use std::collections::hash_map::OccupiedEntry; use std::ops::Add; static KEY_VALIDATION_REGEX: LazyLock<Regex> = LazyLock::new(|| { Regex::new(r"^[A-Za-z]\w+[A-Za-z0-9]$").expect("Key validation regex failed to compile") }); /// Sums any numeric type. fn sum<T: Add + Add<Output = T> + Copy>(operands: [T; 2]) -> T { operands[0] + operands[1] } /// Clones and inserts an entry, so that the original (now concatenated) copy may be returned in the /// response. fn write(inserting: Value, mut entry: OccupiedEntry<'_, String, Value>) -> Value { entry.insert(inserting.clone()); println!("Wrote key: {}, value: {:?}", entry.key(), &inserting); inserting } /// Handler for the `WriteItem` method. fn write_item( store: &mut HashMap<String, Value>, attempt: Item, options: &WriteOptions, ) -> Result<Value, WriteError> { // Validate the key. if !KEY_VALIDATION_REGEX.is_match(attempt.key.as_str()) { println!("Write error: INVALID_KEY for key: {}", attempt.key); return Err(WriteError::InvalidKey); } match store.entry(attempt.key) { Entry::Occupied(entry) => { // The `CONCAT` flag supersedes the `OVERWRITE` flag, so check it first. if options.contains(WriteOptions::CONCAT) { match entry.get() { Value::Bytes(old) => { if let Value::Bytes(new) = attempt.value { let mut combined = old.clone(); combined.extend(new); return Ok(write(Value::Bytes(combined), entry)); } } Value::String(old) => { if let Value::String(new) = attempt.value { return Ok(write(Value::String(format!("{}{}", old, &new)), entry)); } } Value::Uint64(old) => { if let Value::Uint64(new) = attempt.value { return Ok(write(Value::Uint64(sum([*old, new])), entry)); } } Value::Int64(old) => { if let Value::Int64(new) = attempt.value { return Ok(write(Value::Int64(sum([*old, new])), entry)); } } // Note: only works on the uint64 range in practice. Value::Uint128(old) => { if let Value::Uint128(new) = attempt.value { return Ok(write(Value::Uint128([0, sum([old[1], new[1]])]), entry)); } } _ => { panic!("actively unsupported type!") } } // Only reachable if the type of the would be concatenated value did not match the // value already occupying this entry. println!("Write error: INVALID_VALUE for key: {}", entry.key()); return Err(WriteError::InvalidValue); } // If we're not doing CONCAT, check for OVERWRITE next. if options.contains(WriteOptions::OVERWRITE) { return Ok(write(attempt.value, entry)); } println!("Write error: ALREADY_EXISTS for key: {}", entry.key()); Err(WriteError::AlreadyExists) } Entry::Vacant(entry) => { println!("Wrote key: {}, value: {:?}", entry.key(), &attempt.value); entry.insert(attempt.value.clone()); Ok(attempt.value) } } } /// Creates a new instance of the server. Each server has its own bespoke, per-connection instance /// of the key-value store. async fn run_server(stream: StoreRequestStream) -> Result<(), Error> { // Create a new in-memory key-value store. The store will live for the lifetime of the // connection between the server and this particular client. let store = RefCell::new(HashMap::<String, Value>::new()); // Serve all requests on the protocol sequentially - a new request is not handled until its // predecessor has been processed. stream .map(|result| result.context("failed request")) .try_for_each(|request| async { // Match based on the method being invoked. match request { // Because we are using a table payload, there is an extra level of indirection. The // top-level container for the table itself is always called "payload". StoreRequest::WriteItem { payload, responder } => { println!("WriteItem request received"); // Error out if either of the request table's members are not set. let attempt = payload.attempt.context("required field 'attempt' is unset")?; let options = payload.options.context("required field 'options' is unset")?; // The `responder` parameter is a special struct that manages the outgoing reply // to this method call. Calling `send` on the responder exactly once will send // the reply. responder .send( write_item(&mut store.borrow_mut(), attempt, &options) .as_ref() .map_err(|e| *e), ) .context("error sending reply")?; println!("WriteItem response sent"); } // StoreRequest::_UnknownMethod { ordinal, .. } => { println!("Received an unknown method with ordinal {ordinal}"); } } Ok(()) }) .await } // A helper enum that allows us to treat a `Store` service instance as a value. enum IncomingService { Store(StoreRequestStream), } #[fuchsia::main] async fn main() -> Result<(), Error> { println!("Started"); // Add a discoverable instance of our `Store` protocol - this will allow the client to see the // server and connect to it. let mut fs = ServiceFs::new_local(); fs.dir("svc").add_fidl_service(IncomingService::Store); fs.take_and_serve_directory_handle()?; println!("Listening for incoming connections"); // The maximum number of concurrent clients that may be served by this process. const MAX_CONCURRENT: usize = 10; // Serve each connection simultaneously, up to the `MAX_CONCURRENT` limit. fs.for_each_concurrent(MAX_CONCURRENT, |IncomingService::Store(stream)| { run_server(stream).unwrap_or_else(|e| println!("{:?}", e)) }) .await; Ok(()) }
C++ (Natural)
用戶端
// TODO(https://fxbug.dev/42060656): C++ (Natural) implementation.伺服器
// TODO(https://fxbug.dev/42060656): C++ (Natural) implementation.C++ (Wire)
用戶端
// TODO(https://fxbug.dev/42060656): C++ (Wire) implementation.伺服器
// TODO(https://fxbug.dev/42060656): C++ (Wire) implementation.支援巢狀鍵/值儲存空間
在這個變體中,我們允許鍵/值存放區將其他鍵/值存放區視為成員。簡而言之,我們會將其轉換為樹狀結構。方法是將 value 的原始定義,替換為使用雙成員 union 的定義:一個變體會使用與先前相同的 vector<byte> 型別儲存葉節點,另一個變體則會以其他巢狀儲存空間的形式儲存分支節點。
推理
在此,我們看到幾種選用性的用法,也就是宣告可能存在或不存在的型別。FIDL 中有三種可選性:
- 這類型的資料一律會在線上「外行」儲存,因此內建透過空值封包描述「缺席」的方式。為這些型別啟用選用性不會影響訊息的線路形狀,只會變更該特定型別的有效值。透過新增
:optional限制,union、vector<T>、client_end、server_end和zx.Handle類型都可以設為選用。將valueunion設為選用,我們就能以缺少的value形式,導入標準「空值」項目。也就是說,空白的bytes和缺少的/空白的store屬性都是無效值。 - 與上述類型不同,
struct版面配置沒有額外空間可儲存空值標頭。因此,必須將其包裝在信封中,改變訊息在傳輸線上的形狀。為確保這項線路修改效果容易辨識,Itemstruct型別必須包裝在box<T>型別範本中。 - 最後,
table版面配置一律為選用功能。如果table沒有任何成員,就表示該table不存在。
樹狀結構是自然自參照的資料結構:樹狀結構中的任何節點都可能包含純資料的葉片 (在本例中為字串),或包含更多節點的子樹狀結構。這需要遞迴:Item 的定義現在會遞移地依附於自身!在 FIDL 中表示遞迴型別可能有點棘手,尤其因為目前支援程度有限。只要自參照建立的週期中至少有一個選用型別,我們就能支援這類型別。舉例來說,我們在這裡將 items struct 成員定義為 box<Item>,藉此中斷包含週期。
這些變更也大量使用匿名型別,或是在唯一使用點內嵌宣告的型別,而不是命名為自己的頂層 type 宣告。根據預設,所產生語言繫結中的匿名型別名稱取自於其本機環境。舉例來說,新推出的 flexible union 會沿用擁有者的名稱 Value,新推出的 struct 會變成 Store,以此類推。由於這項啟發式方法有時會導致衝突,因此 FIDL 提供逃生出口,允許作者手動覆寫匿名型別的產生名稱。方法是透過 @generated_name 屬性,藉此變更後端產生的名稱。我們可以在這裡使用一個,其中會將原本的 Store 型別重新命名為 NestedStore,以避免與使用相同名稱的 protocol 宣告發生名稱衝突。
實作
FIDL、CML 和領域介面定義修改如下:
FIDL
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. library examples.keyvaluestore.supporttrees; /// An item in the store. The key must match the regex `^[A-z][A-z0-9_\.\/]{2,62}[A-z0-9]$`. That /// is, it must start with a letter, end with a letter or number, contain only letters, numbers, /// periods, and slashes, and be between 4 and 64 characters long. type Item = struct { key string:128; value strict union { // Keep the original `bytes` as one of the options in the new union. All leaf nodes in the // tree must be `bytes`, or absent unions (representing empty). Empty byte arrays are // disallowed. 1: bytes vector<byte>:64000; // Allows a store within a store, thereby turning our flat key-value store into a tree // thereof. Note the use of `@generated_name` to prevent a type-name collision with the // `Store` protocol below, and the use of `box<T>` to ensure that there is a break in the // chain of recursion, thereby allowing `Item` to include itself in its own definition. // // This is a table so that added fields, like for example a `hash`, can be easily added in // the future. 2: store @generated_name("nested_store") table { 1: items vector<box<Item>>; }; }:optional; }; /// An enumeration of things that may go wrong when trying to write a value to our store. type WriteError = flexible enum { UNKNOWN = 0; INVALID_KEY = 1; INVALID_VALUE = 2; ALREADY_EXISTS = 3; }; /// A very basic key-value store. @discoverable open protocol Store { /// Writes an item to the store. flexible WriteItem(struct { attempt Item; }) -> () error WriteError; };
CML
用戶端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { include: [ "syslog/client.shard.cml" ], program: { runner: "elf", binary: "bin/client_bin", }, use: [ { protocol: "examples.keyvaluestore.supporttrees.Store" }, ], config: { write_items: { type: "vector", max_count: 16, element: { type: "string", max_size: 64, }, }, // A newline separated list nested entries. The first line should be the key // for the nested store, and each subsequent entry should be a pointer to a text file // containing the string value. The name of that text file (without the `.txt` suffix) will // serve as the entries key. write_nested: { type: "vector", max_count: 16, element: { type: "string", max_size: 64, }, }, // A list of keys, all of which will be populated as null entries. write_null: { type: "vector", max_count: 16, element: { type: "string", max_size: 64, }, }, }, }
伺服器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { include: [ "syslog/client.shard.cml" ], program: { runner: "elf", binary: "bin/server_bin", }, capabilities: [ { protocol: "examples.keyvaluestore.supporttrees.Store" }, ], expose: [ { protocol: "examples.keyvaluestore.supporttrees.Store", from: "self", }, ], }
運作範圍
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { children: [ { name: "client", url: "#meta/client.cm", }, { name: "server", url: "#meta/server.cm", }, ], offer: [ // Route the protocol under test from the server to the client. { protocol: "examples.keyvaluestore.supporttrees.Store", from: "#server", to: "#client", }, // Route diagnostics support to all children. { dictionary: "diagnostics", from: "parent", to: [ "#client", "#server", ], }, ], }
接著,您可以使用任何支援的語言編寫用戶端和伺服器實作項目:
荒漠油廠
用戶端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. use { anyhow::{Context as _, Error}, config::Config, fidl_examples_keyvaluestore_supporttrees::{Item, NestedStore, StoreMarker, Value}, fuchsia_component::client::connect_to_protocol, std::{thread, time}, }; #[fuchsia::main] async fn main() -> Result<(), Error> { println!("Started"); // Load the structured config values passed to this component at startup. let config = Config::take_from_startup_handle(); // Use the Component Framework runtime to connect to the newly spun up server component. We wrap // our retained client end in a proxy object that lets us asynchronously send `Store` requests // across the channel. let store = connect_to_protocol::<StoreMarker>()?; println!("Outgoing connection enabled"); // This client's structured config has one parameter, a vector of strings. Each string is the // path to a resource file whose filename is a key and whose contents are a value. We iterate // over them and try to write each key-value pair to the remote store. for key in config.write_items.into_iter() { let path = format!("/pkg/data/{}.txt", key); let value = std::fs::read_to_string(path.clone()) .with_context(|| format!("Failed to load {path}"))?; let res = store .write_item(&Item { key: key.clone(), value: Some(Box::new(Value::Bytes(value.into_bytes()))), }) .await; match res? { Ok(_) => println!("WriteItem Success at key: {}", key), Err(err) => println!("WriteItem Error: {}", err.into_primitive()), } } // Add nested entries to the key-value store as well. The entries are strings, where the first // line is the key of the entry, and each subsequent entry should be a pointer to a text file // containing the string value. The name of that text file (without the `.txt` suffix) will // serve as the entries key. for spec in config.write_nested.into_iter() { let mut items = vec![]; let mut nested_store = NestedStore::default(); let mut lines = spec.split("\n"); let key = lines.next().unwrap(); // For each entry, make a new entry in the `NestedStore` being built. for entry in lines { let path = format!("/pkg/data/{}.txt", entry); let contents = std::fs::read_to_string(path.clone()) .with_context(|| format!("Failed to load {path}"))?; items.push(Some(Box::new(Item { key: entry.to_string(), value: Some(Box::new(Value::Bytes(contents.into()))), }))); } nested_store.items = Some(items); // Send the `NestedStore`, represented as a vector of values. let res = store .write_item(&Item { key: key.to_string(), value: Some(Box::new(Value::Store(nested_store))), }) .await; match res? { Ok(_) => println!("WriteItem Success at key: {}", key), Err(err) => println!("WriteItem Error: {}", err.into_primitive()), } } // Each entry in this list is a null value in the store. for key in config.write_null.into_iter() { match store.write_item(&Item { key: key.to_string(), value: None }).await? { Ok(_) => println!("WriteItem Success at key: {}", key), Err(err) => println!("WriteItem Error: {}", err.into_primitive()), } } // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the // referenced bug has been resolved, we can remove the sleep. thread::sleep(time::Duration::from_secs(2)); Ok(()) }
伺服器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Note: For the clarity of this example, allow code to be unused. #![allow(dead_code)] use { anyhow::{Context as _, Error}, fidl_examples_keyvaluestore_supporttrees::{ Item, StoreRequest, StoreRequestStream, Value, WriteError, }, fuchsia_component::server::ServiceFs, futures::prelude::*, regex::Regex, std::cell::RefCell, std::collections::HashMap, std::collections::hash_map::Entry, std::str::from_utf8, std::sync::LazyLock, }; static KEY_VALIDATION_REGEX: LazyLock<Regex> = LazyLock::new(|| { Regex::new(r"^[A-Za-z]\w+[A-Za-z0-9]$").expect("Key validation regex failed to compile") }); // A representation of a key-value store that can contain an arbitrarily deep nesting of other // key-value stores. #[allow(clippy::box_collection, reason = "mass allow for https://fxbug.dev/381896734")] enum StoreNode { Leaf(Option<Vec<u8>>), Branch(Box<HashMap<String, StoreNode>>), } /// Recursive item writer, which takes a `StoreNode` that may not necessarily be the root node, and /// writes an entry to it. fn write_item( store: &mut HashMap<String, StoreNode>, attempt: Item, path: &str, ) -> Result<(), WriteError> { // Validate the key. if !KEY_VALIDATION_REGEX.is_match(attempt.key.as_str()) { println!("Write error: INVALID_KEY, For key: {}", attempt.key); return Err(WriteError::InvalidKey); } // Write to the store, validating that the key did not already exist. match store.entry(attempt.key) { Entry::Occupied(entry) => { println!("Write error: ALREADY_EXISTS, For key: {}", entry.key()); Err(WriteError::AlreadyExists) } Entry::Vacant(entry) => { let key = format!("{}{}", &path, entry.key()); match attempt.value { // Null entries are allowed. None => { println!("Wrote value: NONE at key: {}", key); entry.insert(StoreNode::Leaf(None)); } Some(value) => match *value { // If this is a nested store, recursively make a new store to insert at this // position. Value::Store(entry_list) => { // Validate the value - absent stores, items lists with no children, or any // of the elements within that list being empty boxes, are all not allowed. if entry_list.items.is_some() { let items = entry_list.items.unwrap(); if !items.is_empty() && items.iter().all(|i| i.is_some()) { let nested_path = format!("{}/", key); let mut nested_store = HashMap::<String, StoreNode>::new(); for item in items.into_iter() { write_item(&mut nested_store, *item.unwrap(), &nested_path)?; } println!("Created branch at key: {}", key); entry.insert(StoreNode::Branch(Box::new(nested_store))); return Ok(()); } } println!("Write error: INVALID_VALUE, For key: {}", key); return Err(WriteError::InvalidValue); } // This is a simple leaf node on this branch. Value::Bytes(value) => { // Validate the value. if value.is_empty() { println!("Write error: INVALID_VALUE, For key: {}", key); return Err(WriteError::InvalidValue); } println!("Wrote key: {}, value: {:?}", key, from_utf8(&value).unwrap()); entry.insert(StoreNode::Leaf(Some(value))); } }, } Ok(()) } } } /// Creates a new instance of the server. Each server has its own bespoke, per-connection instance /// of the key-value store. async fn run_server(stream: StoreRequestStream) -> Result<(), Error> { // Create a new in-memory key-value store. The store will live for the lifetime of the // connection between the server and this particular client. let store = RefCell::new(HashMap::<String, StoreNode>::new()); // Serve all requests on the protocol sequentially - a new request is not handled until its // predecessor has been processed. stream .map(|result| result.context("failed request")) .try_for_each(|request| async { // Match based on the method being invoked. match request { StoreRequest::WriteItem { attempt, responder } => { println!("WriteItem request received"); // The `responder` parameter is a special struct that manages the outgoing reply // to this method call. Calling `send` on the responder exactly once will send // the reply. responder .send(write_item(&mut store.borrow_mut(), attempt, "")) .context("error sending reply")?; println!("WriteItem response sent"); } StoreRequest::_UnknownMethod { ordinal, .. } => { println!("Received an unknown method with ordinal {ordinal}"); } } Ok(()) }) .await } // A helper enum that allows us to treat a `Store` service instance as a value. enum IncomingService { Store(StoreRequestStream), } #[fuchsia::main] async fn main() -> Result<(), Error> { println!("Started"); // Add a discoverable instance of our `Store` protocol - this will allow the client to see the // server and connect to it. let mut fs = ServiceFs::new_local(); fs.dir("svc").add_fidl_service(IncomingService::Store); fs.take_and_serve_directory_handle()?; println!("Listening for incoming connections"); // The maximum number of concurrent clients that may be served by this process. const MAX_CONCURRENT: usize = 10; // Serve each connection simultaneously, up to the `MAX_CONCURRENT` limit. fs.for_each_concurrent(MAX_CONCURRENT, |IncomingService::Store(stream)| { run_server(stream).unwrap_or_else(|e| println!("{:?}", e)) }) .await; Ok(()) }
C++ (Natural)
用戶端
// TODO(https://fxbug.dev/42060656): C++ (Natural) implementation.伺服器
// TODO(https://fxbug.dev/42060656): C++ (Natural) implementation.C++ (Wire)
用戶端
// TODO(https://fxbug.dev/42060656): C++ (Wire) implementation.伺服器
// TODO(https://fxbug.dev/42060656): C++ (Wire) implementation.新增對商店疊代的支援
鍵/值儲存空間的實用作業是依序疊代,也就是在指定鍵時,依序傳回該鍵之後的元素清單 (通常會分頁)。
推理
在 FIDL 中,最好使用迭代器完成這項作業,迭代器通常會實作為獨立通訊協定,可透過該通訊協定進行迭代。使用獨立的通訊協定 (因此也是獨立的管道) 有許多優點,包括從透過主要通訊協定執行的其他作業中,取消交錯疊代提取要求。
通訊協定 P 的管道連線用戶端和伺服器端可分別以 FIDL 資料類型表示,即 client_end:P 和 server_end:P。這些型別統稱為「通訊協定端點」,代表將 FIDL 用戶端連線至對應伺服器的另一種方式 (非 @discoverable):透過現有的 FIDL 連線!
通訊協定端點是 FIDL 一般概念的特定執行個體:資源型別。資源類型應包含 FIDL 控制代碼,因此必須對類型的使用方式施加額外限制。類型一律必須是專屬類型,因為基礎資源是由其他能力管理員 (通常是 Zircon 核心) 仲介。如果沒有管理員介入,就無法透過簡單的記憶體內複製作業複製這類資源。為避免這類重複項目,FIDL 中的所有資源類型一律只能移動。
最後,Iterator 通訊協定本身的 Get() 方法會對回傳酬載使用大小限制。這會限制單次提取作業可傳輸的資料量,有助於控制資源用量。這也會建立自然的分頁界線:伺服器不必一次準備所有結果的大量傾印,只需要一次準備小批次。
實作
FIDL、CML 和領域介面定義如下:
FIDL
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. library examples.keyvaluestore.additerator; /// An item in the store. The key must match the regex `^[A-z][A-z0-9_\.\/]{2,62}[A-z0-9]$`. That /// is, it must start with a letter, end with a letter or number, contain only letters, numbers, /// periods, and slashes, and be between 4 and 64 characters long. type Item = struct { key string:128; value vector<byte>:64000; }; /// An enumeration of things that may go wrong when trying to write a value to our store. type WriteError = flexible enum { UNKNOWN = 0; INVALID_KEY = 1; INVALID_VALUE = 2; ALREADY_EXISTS = 3; }; /// An enumeration of things that may go wrong when trying to create an iterator. type IterateConnectionError = flexible enum { /// The starting key was not found. UNKNOWN_START_AT = 1; }; /// A key-value store which supports insertion and iteration. @discoverable open protocol Store { /// Writes an item to the store. flexible WriteItem(struct { attempt Item; }) -> () error WriteError; /// Iterates over the items in the store, using lexicographic ordering over the keys. /// /// The [`iterator`] is [pipelined][pipelining] to the server, such that the client can /// immediately send requests over the new connection. /// /// [pipelining]: https://fuchsia.dev/fuchsia-src/development/api/fidl?hl=en#request-pipelining flexible Iterate(resource struct { /// If present, requests to start the iteration at this item. starting_at string:<128, optional>; /// The [`Iterator`] server endpoint. The client creates both ends of the channel and /// retains the `client_end` locally to use for pulling iteration pages, while sending the /// `server_end` off to be fulfilled by the server. iterator server_end:Iterator; }) -> () error IterateConnectionError; }; /// An iterator for the key-value store. Note that this protocol makes no guarantee of atomicity - /// the values may change between pulls from the iterator. Unlike the `Store` protocol above, this /// protocol is not `@discoverable`: it is not independently published by the component that /// implements it, but rather must have one of its two protocol ends transmitted over an existing /// FIDL connection. /// /// As is often the case with iterators, the client indicates that they are done with an instance of /// the iterator by simply closing their end of the connection. /// /// Since the iterator is associated only with the Iterate method, it is declared as closed rather /// than open. This is because changes to how iteration works are more likely to require replacing /// the Iterate method completely (which is fine because that method is flexible) rather than /// evolving the Iterator protocol. closed protocol Iterator { /// Gets the next batch of keys. /// /// The client pulls keys rather than having the server proactively push them, to implement /// [flow control][flow-control] over the messages. /// /// [flow-control]: /// https://fuchsia.dev/fuchsia-src/development/api/fidl?hl=en#prefer_pull_to_push strict Get() -> (struct { /// A list of keys. If the iterator has reached the end of iteration, the list will be /// empty. The client is expected to then close the connection. entries vector<string:128>:10; }); };
CML
用戶端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { include: [ "syslog/client.shard.cml" ], program: { runner: "elf", binary: "bin/client_bin", }, use: [ { protocol: "examples.keyvaluestore.additerator.Store" }, ], config: { write_items: { type: "vector", max_count: 16, element: { type: "string", max_size: 64, }, }, // A key to iterate from, after all items in `write_items` have been written. iterate_from: { type: "string", max_size: 64, }, }, }
伺服器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { include: [ "syslog/client.shard.cml" ], program: { runner: "elf", binary: "bin/server_bin", }, capabilities: [ { protocol: "examples.keyvaluestore.additerator.Store" }, ], expose: [ { protocol: "examples.keyvaluestore.additerator.Store", from: "self", }, ], }
運作範圍
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { children: [ { name: "client", url: "#meta/client.cm", }, { name: "server", url: "#meta/server.cm", }, ], offer: [ // Route the protocol under test from the server to the client. { protocol: "examples.keyvaluestore.additerator.Store", from: "#server", to: "#client", }, // Route diagnostics support to all children. { dictionary: "diagnostics", from: "parent", to: [ "#client", "#server", ], }, ], }
接著,您可以使用任何支援的語言編寫用戶端和伺服器實作項目:
荒漠油廠
用戶端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. use anyhow::{Context as _, Error}; use config::Config; use fuchsia_component::client::connect_to_protocol; use std::{thread, time}; use fidl::endpoints::create_proxy; use fidl_examples_keyvaluestore_additerator::{Item, IteratorMarker, StoreMarker}; use futures::join; #[fuchsia::main] async fn main() -> Result<(), Error> { println!("Started"); // Load the structured config values passed to this component at startup. let config = Config::take_from_startup_handle(); // Use the Component Framework runtime to connect to the newly spun up server component. We wrap // our retained client end in a proxy object that lets us asynchronously send `Store` requests // across the channel. let store = connect_to_protocol::<StoreMarker>()?; println!("Outgoing connection enabled"); // This client's structured config has one parameter, a vector of strings. Each string is the // path to a resource file whose filename is a key and whose contents are a value. We iterate // over them and try to write each key-value pair to the remote store. for key in config.write_items.into_iter() { let path = format!("/pkg/data/{}.txt", key); let value = std::fs::read_to_string(path.clone()) .with_context(|| format!("Failed to load {path}"))?; match store.write_item(&Item { key: key, value: value.into_bytes() }).await? { Ok(_) => println!("WriteItem Success"), Err(err) => println!("WriteItem Error: {}", err.into_primitive()), } } if !config.iterate_from.is_empty() { // This helper creates a channel, and returns two protocol ends: the `client_end` is already // conveniently bound to the correct FIDL protocol, `Iterator`, while the `server_end` is // unbound and ready to be sent over the wire. let (iterator, server_end) = create_proxy::<IteratorMarker>(); // There is no need to wait for the iterator to connect before sending the first `Get()` // request - since we already hold the `client_end` of the connection, we can start queuing // requests on it immediately. let connect_to_iterator = store.iterate(Some(config.iterate_from.as_str()), server_end); let first_get = iterator.get(); // Wait until both the connection and the first request resolve - an error in either case // triggers an immediate resolution of the combined future. let (connection, first_page) = join!(connect_to_iterator, first_get); // Handle any connection error. If this has occurred, it is impossible for the first `Get()` // call to have resolved successfully, so check this error first. if let Err(err) = connection.context("Could not connect to Iterator")? { println!("Iterator Connection Error: {}", err.into_primitive()); } else { println!("Iterator Connection Success"); // Consecutively repeat the `Get()` request if the previous response was not empty. let mut entries = first_page.context("Could not get page from Iterator")?; while !&entries.is_empty() { for entry in entries.iter() { println!("Iterator Entry: {}", entry); } entries = iterator.get().await.context("Could not get page from Iterator")?; } } } // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the // referenced bug has been resolved, we can remove the sleep. thread::sleep(time::Duration::from_secs(2)); Ok(()) }
伺服器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. use anyhow::{Context as _, Error}; use fuchsia_component::server::ServiceFs; use futures::prelude::*; use regex::Regex; use std::sync::LazyLock; use fidl_examples_keyvaluestore_additerator::{ Item, IterateConnectionError, IteratorRequest, IteratorRequestStream, StoreRequest, StoreRequestStream, WriteError, }; use fuchsia_async as fasync; use fuchsia_sync::Mutex; use std::collections::BTreeMap; use std::collections::btree_map::Entry; use std::ops::Bound::*; use std::sync::Arc; static KEY_VALIDATION_REGEX: LazyLock<Regex> = LazyLock::new(|| { Regex::new(r"^[A-Za-z]\w+[A-Za-z0-9]$").expect("Key validation regex failed to compile") }); /// Handler for the `WriteItem` method. fn write_item(store: &mut BTreeMap<String, Vec<u8>>, attempt: Item) -> Result<(), WriteError> { // Validate the key. if !KEY_VALIDATION_REGEX.is_match(attempt.key.as_str()) { println!("Write error: INVALID_KEY, For key: {}", attempt.key); return Err(WriteError::InvalidKey); } // Validate the value. if attempt.value.is_empty() { println!("Write error: INVALID_VALUE, For key: {}", attempt.key); return Err(WriteError::InvalidValue); } // Write to the store, validating that the key did not already exist. match store.entry(attempt.key) { Entry::Occupied(entry) => { println!("Write error: ALREADY_EXISTS, For key: {}", entry.key()); Err(WriteError::AlreadyExists) } Entry::Vacant(entry) => { println!("Wrote value at key: {}", entry.key()); entry.insert(attempt.value); Ok(()) } } } /// Handler for the `Iterate` method, which deals with validating that the requested start position /// exists, and then sets up the asynchronous side channel for the actual iteration to occur over. fn iterate( store: Arc<Mutex<BTreeMap<String, Vec<u8>>>>, starting_at: Option<String>, stream: IteratorRequestStream, ) -> Result<(), IterateConnectionError> { // Validate that the starting key, if supplied, actually exists. if let Some(start_key) = starting_at.clone() { if !store.lock().contains_key(&start_key) { return Err(IterateConnectionError::UnknownStartAt); } } // Spawn a detached task. This allows the method call to return while the iteration continues in // a separate, unawaited task. fasync::Task::spawn(async move { // Serve the iteration requests. Note that access to the underlying store is behind a // contended `Mutex`, meaning that the iteration is not atomic: page contents could shift, // change, or disappear entirely between `Get()` requests. stream .map(|result| result.context("failed request")) .try_fold( match starting_at { Some(start_key) => Included(start_key), None => Unbounded, }, |mut lower_bound, request| async { match request { IteratorRequest::Get { responder } => { println!("Iterator page request received"); // The `page_size` should be kept in sync with the size constraint on // the iterator's response, as defined in the FIDL protocol. static PAGE_SIZE: usize = 10; // An iterator, beginning at `lower_bound` and tracking the pagination's // progress through iteration as each page is pulled by a client-sent // `Get()` request. let held_store = store.lock(); let mut entries = held_store.range((lower_bound.clone(), Unbounded)); let mut current_page = vec![]; for _ in 0..PAGE_SIZE { match entries.next() { Some(entry) => { current_page.push(entry.0.clone()); } None => break, } } // Update the `lower_bound` - either inclusive of the next item in the // iteration, or exclusive of the last seen item if the iteration has // finished. This `lower_bound` will be passed to the next request // handler as its starting point. lower_bound = match entries.next() { Some(next) => Included(next.0.clone()), None => match current_page.last() { Some(tail) => Excluded(tail.clone()), None => lower_bound, }, }; // Send the page. At the end of this scope, the `held_store` lock gets // dropped, and therefore released. responder.send(¤t_page).context("error sending reply")?; println!("Iterator page sent"); } } Ok(lower_bound) }, ) .await .ok(); }) .detach(); Ok(()) } /// Creates a new instance of the server. Each server has its own bespoke, per-connection instance /// of the key-value store. async fn run_server(stream: StoreRequestStream) -> Result<(), Error> { // Create a new in-memory key-value store. The store will live for the lifetime of the // connection between the server and this particular client. // // Note that we now use an `Arc<Mutex<BTreeMap>>`, replacing the previous `RefCell<HashMap>`. // The `BTreeMap` is used because we want an ordered map, to better facilitate iteration. The // `Arc<Mutex<...>>` is used because there are now multiple async tasks accessing the: one main // task which handles communication over the protocol, and one additional task per iterator // protocol. `Arc<Mutex<...>>` is the simplest way to synchronize concurrent access between // these racing tasks. let store = &Arc::new(Mutex::new(BTreeMap::<String, Vec<u8>>::new())); // Serve all requests on the protocol sequentially - a new request is not handled until its // predecessor has been processed. stream .map(|result| result.context("failed request")) .try_for_each(|request| async { // Match based on the method being invoked. match request { StoreRequest::WriteItem { attempt, responder } => { println!("WriteItem request received"); // The `responder` parameter is a special struct that manages the outgoing reply // to this method call. Calling `send` on the responder exactly once will send // the reply. responder .send(write_item(&mut store.clone().lock(), attempt)) .context("error sending reply")?; println!("WriteItem response sent"); } StoreRequest::Iterate { starting_at, iterator, responder } => { println!("Iterate request received"); // The `iterate` handler does a quick check to see that the request is valid, // then spins up a separate worker task to serve the newly minted `Iterator` // protocol instance, allowing this call to return immediately and continue the // request stream with other work. responder .send(iterate(store.clone(), starting_at, iterator.into_stream())) .context("error sending reply")?; println!("Iterate response sent"); } // StoreRequest::_UnknownMethod { ordinal, .. } => { println!("Received an unknown method with ordinal {ordinal}"); } } Ok(()) }) .await } // A helper enum that allows us to treat a `Store` service instance as a value. enum IncomingService { Store(StoreRequestStream), } #[fuchsia::main] async fn main() -> Result<(), Error> { println!("Started"); // Add a discoverable instance of our `Store` protocol - this will allow the client to see the // server and connect to it. let mut fs = ServiceFs::new_local(); fs.dir("svc").add_fidl_service(IncomingService::Store); fs.take_and_serve_directory_handle()?; println!("Listening for incoming connections"); // The maximum number of concurrent clients that may be served by this process. const MAX_CONCURRENT: usize = 10; // Serve each connection simultaneously, up to the `MAX_CONCURRENT` limit. fs.for_each_concurrent(MAX_CONCURRENT, |IncomingService::Store(stream)| { run_server(stream).unwrap_or_else(|e| println!("{:?}", e)) }) .await; Ok(()) }
C++ (Natural)
用戶端
// TODO(https://fxbug.dev/42060656): C++ (Natural) implementation.伺服器
// TODO(https://fxbug.dev/42060656): C++ (Natural) implementation.C++ (Wire)
用戶端
// TODO(https://fxbug.dev/42060656): C++ (Wire) implementation.伺服器
// TODO(https://fxbug.dev/42060656): C++ (Wire) implementation.啟用備份匯出功能
如要擴充鍵/值儲存空間以支援匯出備份,簡單的方法是新增一個方法,停止世界、序列化儲存空間的狀態,並以 FIDL vector<Item> 形式傳回。不過,這種做法有兩項缺點。首先,這會將所有備份負擔都加諸於伺服器上,用戶端不必支付任何費用,就能要求伺服器執行成本高昂的備份作業。第二個原因是這涉及大量複製作業:用戶端幾乎肯定會在收到備份資料後,立即將備份資料寫入某些備份資料存放區,例如檔案或資料庫。讓它解碼這個 (可能非常大的) FIDL 物件,只是為了立即重新編碼並轉送至實際儲存資料的任何通訊協定,是非常浪費資源的行為。
推理
更好的做法是使用 Zircon 的虛擬記憶體物件。我們不必在水桶傳遞中不斷來回複製位元組,而是可以建立 VMO,在用戶端保留備份資料、傳送至伺服器,然後轉送回目標資料儲存區,期間不必進行還原序列化。只要目標資料存放區的通訊協定允許接受使用 VMO 傳輸的資料,這就是完成這類耗費資源作業的首選方式。事實上,Fuchsia 的檔案系統就實作了這個模式。這種做法的優點是,當用戶端要求伺服器執行耗費資源的作業時,會強制用戶端執行部分工作,盡量減少雙方之間的工作量不平衡。
FIDL 值類型可使用 FIDL 資料持續性二進位格式,持續儲存至任何以位元組為導向的儲存媒體。我們會將新導入的 FIDL 型別 Exportable 持久儲存到 VMO 中。物件會經過編碼並寫入儲存空間 (在本例中為 VMO,之後可儲存為檔案),並在需要再次存取資料時從中解碼,這與透過 IPC 使用 FIDL 時,訊息經過編碼、傳輸及稍後再次解碼的方式大致相同。
為確保安全並遵循最低權限原則,我們應限制代表 VMO 的控制代碼可能攜帶的權限。輸入「handle rights」,這是 FIDL 的一流方法,用於說明特定控制代碼類型可用的權限。在本例中,我們允許從 Export 要求傳遞至伺服器的 empty VMO 讀取、查詢大小、調整大小及寫入。VMO 傳回時,我們會移除大小調整和寫入權限,確保任何程序 (包括遠端元件中的惡意行為者) 都無法在資料通過系統時修改資料。
實作
FIDL、CML 和領域介面定義如下:
FIDL
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. library examples.keyvaluestore.supportexports; using zx; /// An item in the store. The key must match the regex `^[A-z][A-z0-9_\.\/]{2,62}[A-z0-9]$`. That /// is, it must start with a letter, end with a letter or number, contain only letters, numbers, /// periods, and slashes, and be between 4 and 64 characters long. type Item = struct { key string:128; value vector<byte>:64000; }; /// An enumeration of things that may go wrong when trying to write a value to our store. type WriteError = flexible enum { UNKNOWN = 0; INVALID_KEY = 1; INVALID_VALUE = 2; ALREADY_EXISTS = 3; }; /// An enumeration of things that may go wrong when trying to mint an export. type ExportError = flexible enum { UNKNOWN = 0; EMPTY = 1; STORAGE_TOO_SMALL = 2; }; // A data type describing the structure of a single export. We never actually send this data type // over the wire (we use the file's VMO instead), but whenever data needs to be written to/read from // its backing storage as persistent FIDL, it will have this schema. /// /// The items should be sorted in ascending order, following lexicographic ordering of their keys. type Exportable = table { 1: items vector<Item>; }; /// A very basic key-value store - so basic, in fact, that one may only write to it, never read! @discoverable open protocol Store { /// Writes an item to the store. flexible WriteItem(struct { attempt Item; }) -> () error WriteError; /// Exports the entire store as a persistent [`Exportable`] FIDL object into a VMO provided by /// the client. /// /// By having the client provide (and speculatively size) the VMO, we force the party requesting /// the relatively heavy load of generating a backup to acknowledge and bear some of the costs. /// /// This method operates by having the client supply an empty VMO, which the server then /// attempts to fill. Notice that the server removes the `zx.Rights.WRITE` and /// `zx.Rights.SET_PROPERTY` rights from the returned VMO - not even the requesting client may /// alter the backup once it has been minted by the server. flexible Export(resource struct { /// Note that the empty VMO has more rights than the filled one being returned: it has /// `zx.Rights.WRITE` (via `zx.RIGHTS_IO`) so that the VMO may be filled with exported data, /// and `zx.Rights.SET_PROPERTY` (via `zx.RIGHTS_PROPERTY`) so that it may be resized to /// truncate any remaining empty buffer. empty zx.Handle:<VMO, zx.RIGHTS_BASIC | zx.RIGHTS_PROPERTY | zx.RIGHTS_IO>; }) -> (resource struct { /// The `zx.Rights.WRITE` and `zx.Rights.SET_PROPERTY` rights have been removed from the now /// filled VMO. No one, not even the client that requested the export, is able to modify /// this VMO going forward. filled zx.Handle:<VMO, zx.RIGHTS_BASIC | zx.Rights.GET_PROPERTY | zx.Rights.READ>; }) error ExportError; };
CML
用戶端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { include: [ "syslog/client.shard.cml" ], program: { runner: "elf", binary: "bin/client_bin", }, use: [ { protocol: "examples.keyvaluestore.supportexports.Store" }, ], config: { write_items: { type: "vector", max_count: 16, element: { type: "string", max_size: 64, }, }, // The size, in bytes, allotted to the export VMO max_export_size: { type: "uint64" }, }, }
伺服器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { include: [ "syslog/client.shard.cml" ], program: { runner: "elf", binary: "bin/server_bin", }, capabilities: [ { protocol: "examples.keyvaluestore.supportexports.Store" }, ], expose: [ { protocol: "examples.keyvaluestore.supportexports.Store", from: "self", }, ], }
運作範圍
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { children: [ { name: "client", url: "#meta/client.cm", }, { name: "server", url: "#meta/server.cm", }, ], offer: [ // Route the protocol under test from the server to the client. { protocol: "examples.keyvaluestore.supportexports.Store", from: "#server", to: "#client", }, // Route diagnostics support to all children. { dictionary: "diagnostics", from: "parent", to: [ "#client", "#server", ], }, ], }
接著,您可以使用任何支援的語言編寫用戶端和伺服器實作項目:
荒漠油廠
用戶端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. use anyhow::{Context as _, Error}; use config::Config; use fuchsia_component::client::connect_to_protocol; use std::{thread, time}; use fidl::unpersist; use fidl_examples_keyvaluestore_supportexports::{Exportable, Item, StoreMarker}; use zx::Vmo; #[fuchsia::main] async fn main() -> Result<(), Error> { println!("Started"); // Load the structured config values passed to this component at startup. let config = Config::take_from_startup_handle(); // Use the Component Framework runtime to connect to the newly spun up server component. We wrap // our retained client end in a proxy object that lets us asynchronously send `Store` requests // across the channel. let store = connect_to_protocol::<StoreMarker>()?; println!("Outgoing connection enabled"); // This client's structured config has one parameter, a vector of strings. Each string is the // path to a resource file whose filename is a key and whose contents are a value. We iterate // over them and try to write each key-value pair to the remote store. for key in config.write_items.into_iter() { let path = format!("/pkg/data/{}.txt", key); let value = std::fs::read_to_string(path.clone()) .with_context(|| format!("Failed to load {path}"))?; match store.write_item(&Item { key: key, value: value.into_bytes() }).await? { Ok(_) => println!("WriteItem Success"), Err(err) => println!("WriteItem Error: {}", err.into_primitive()), } } // If the `max_export_size` is 0, no export is possible, so just ignore this block. This check // isn't strictly necessary, but does avoid extra work down the line. if config.max_export_size > 0 { // Create a 100Kb VMO to store the resulting export. In a real implementation, we would // likely receive the VMO representing the to-be-written file from file system like vfs of // fxfs. let vmo = Vmo::create(config.max_export_size)?; // Send the VMO to the server, to be populated with the current state of the key-value // store. match store.export(vmo).await? { Err(err) => { println!("Export Error: {}", err.into_primitive()); } Ok(output) => { println!("Export Success"); // Read the exported data (encoded in byte form as persistent FIDL) from the // returned VMO. In a real implementation, instead of reading the VMO, we would // merely forward it to some other storage-handling process. Doing this using a VMO, // rather than FIDL IPC, would save us frivolous reads and writes at each hop. let content_size = output.get_content_size().unwrap(); let mut encoded_bytes = vec![0; content_size as usize]; output.read(&mut encoded_bytes, 0)?; // Decode the persistent FIDL that was just read from the file. let exportable = unpersist::<Exportable>(&encoded_bytes).unwrap(); let items = exportable.items.expect("must always be set"); // Log some information about the exported data. println!("Printing {} exported entries, which are:", items.len()); for item in items.iter() { println!(" * {}", item.key); } } }; } // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the // referenced bug has been resolved, we can remove the sleep. thread::sleep(time::Duration::from_secs(2)); Ok(()) }
伺服器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. use anyhow::{Context as _, Error}; use fuchsia_component::server::ServiceFs; use futures::prelude::*; use regex::Regex; use std::cell::RefCell; use std::collections::HashMap; use std::collections::hash_map::Entry; use std::sync::LazyLock; use fidl::{Vmo, persist}; use fidl_examples_keyvaluestore_supportexports::{ ExportError, Exportable, Item, StoreRequest, StoreRequestStream, WriteError, }; static KEY_VALIDATION_REGEX: LazyLock<Regex> = LazyLock::new(|| { Regex::new(r"^[A-Za-z]\w+[A-Za-z0-9]$").expect("Key validation regex failed to compile") }); /// Handler for the `WriteItem` method. fn write_item(store: &mut HashMap<String, Vec<u8>>, attempt: Item) -> Result<(), WriteError> { // Validate the key. if !KEY_VALIDATION_REGEX.is_match(attempt.key.as_str()) { println!("Write error: INVALID_KEY, For key: {}", attempt.key); return Err(WriteError::InvalidKey); } // Validate the value. if attempt.value.is_empty() { println!("Write error: INVALID_VALUE, For key: {}", attempt.key); return Err(WriteError::InvalidValue); } // Write to the store, validating that the key did not already exist. match store.entry(attempt.key) { Entry::Occupied(entry) => { println!("Write error: ALREADY_EXISTS, For key: {}", entry.key()); Err(WriteError::AlreadyExists) } Entry::Vacant(entry) => { println!("Wrote value at key: {}", entry.key()); entry.insert(attempt.value); Ok(()) } } } /// Handler for the `Export` method. fn export(store: &mut HashMap<String, Vec<u8>>, vmo: Vmo) -> Result<Vmo, ExportError> { // Empty stores cannot be exported. if store.is_empty() { return Err(ExportError::Empty); } // Build the `Exportable` vector locally. That means iterating over the map, and turning it into // a vector of items instead. let mut exportable = Exportable::default(); let mut items = store .iter() .map(|entry| return Item { key: entry.0.clone(), value: entry.1.clone() }) .collect::<Vec<Item>>(); items.sort_by(|a, b| a.key.cmp(&b.key)); exportable.items = Some(items); // Encode the bytes - there is a bug in persistent FIDL if this operation fails. Even if it // succeeds, make sure to check that the VMO has enough space to handle the encoded export data. let encoded_bytes = persist(&exportable).map_err(|_| ExportError::Unknown)?; if encoded_bytes.len() as u64 > vmo.get_content_size().map_err(|_| ExportError::Unknown)? { return Err(ExportError::StorageTooSmall); } // Write the (now encoded) persistent FIDL data to the VMO. vmo.set_content_size(&(encoded_bytes.len() as u64)).map_err(|_| ExportError::Unknown)?; vmo.write(&encoded_bytes, 0).map_err(|_| ExportError::Unknown)?; Ok(vmo) } /// Creates a new instance of the server. Each server has its own bespoke, per-connection instance /// of the key-value store. async fn run_server(stream: StoreRequestStream) -> Result<(), Error> { // Create a new in-memory key-value store. The store will live for the lifetime of the // connection between the server and this particular client. let store = RefCell::new(HashMap::<String, Vec<u8>>::new()); // Serve all requests on the protocol sequentially - a new request is not handled until its // predecessor has been processed. stream .map(|result| result.context("failed request")) .try_for_each(|request| async { // Match based on the method being invoked. match request { StoreRequest::WriteItem { attempt, responder } => { println!("WriteItem request received"); // The `responder` parameter is a special struct that manages the outgoing reply // to this method call. Calling `send` on the responder exactly once will send // the reply. responder .send(write_item(&mut store.borrow_mut(), attempt)) .context("error sending reply")?; println!("WriteItem response sent"); } StoreRequest::Export { empty, responder } => { println!("Export request received"); responder .send(export(&mut store.borrow_mut(), empty)) .context("error sending reply")?; println!("Export response sent"); } // StoreRequest::_UnknownMethod { ordinal, .. } => { println!("Received an unknown method with ordinal {ordinal}"); } } Ok(()) }) .await } // A helper enum that allows us to treat a `Store` service instance as a value. enum IncomingService { Store(StoreRequestStream), } #[fuchsia::main] async fn main() -> Result<(), Error> { println!("Started"); // Add a discoverable instance of our `Store` protocol - this will allow the client to see the // server and connect to it. let mut fs = ServiceFs::new_local(); fs.dir("svc").add_fidl_service(IncomingService::Store); fs.take_and_serve_directory_handle()?; println!("Listening for incoming connections"); // The maximum number of concurrent clients that may be served by this process. const MAX_CONCURRENT: usize = 10; // Serve each connection simultaneously, up to the `MAX_CONCURRENT` limit. fs.for_each_concurrent(MAX_CONCURRENT, |IncomingService::Store(stream)| { run_server(stream).unwrap_or_else(|e| println!("{:?}", e)) }) .await; Ok(()) }
C++ (Natural)
用戶端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <fidl/examples.keyvaluestore.supportexports/cpp/fidl.h> #include <lib/async-loop/cpp/loop.h> #include <lib/component/incoming/cpp/protocol.h> #include <lib/syslog/cpp/macros.h> #include <unistd.h> #include <examples/fidl/new/key_value_store/support_exports/cpp_natural/client/config.h> #include <src/lib/files/file.h> #include <src/lib/fxl/strings/string_printf.h> int main(int argc, const char** argv) { FX_LOGS(INFO) << "Started"; // Retrieve component configuration. auto conf = config::Config::TakeFromStartupHandle(); // Start up an async loop and dispatcher. async::Loop loop(&kAsyncLoopConfigNeverAttachToThread); async_dispatcher_t* dispatcher = loop.dispatcher(); // Connect to the protocol inside the component's namespace. This can fail so it's wrapped in a // |zx::result| and it must be checked for errors. zx::result client_end = component::Connect<examples_keyvaluestore_supportexports::Store>(); if (!client_end.is_ok()) { FX_LOGS(ERROR) << "Synchronous error when connecting to the |Store| protocol: " << client_end.status_string(); return -1; } // Create an asynchronous client using the newly-established connection. fidl::Client client(std::move(*client_end), dispatcher); FX_LOGS(INFO) << "Outgoing connection enabled"; for (const auto& action : conf.write_items()) { std::string text; if (!files::ReadFileToString(fxl::StringPrintf("/pkg/data/%s.txt", action.c_str()), &text)) { FX_LOGS(ERROR) << "It looks like the correct `resource` dependency has not been packaged"; break; } auto value = std::vector<uint8_t>(text.begin(), text.end()); client->WriteItem(examples_keyvaluestore_supportexports::Item(action, value)) .ThenExactlyOnce( [&](fidl::Result<examples_keyvaluestore_supportexports::Store::WriteItem> result) { // Check if the FIDL call succeeded or not. if (!result.is_ok()) { if (result.error_value().is_framework_error()) { FX_LOGS(ERROR) << "Unexpected FIDL framework error: " << result.error_value(); } else { FX_LOGS(INFO) << "WriteItem Error: " << fidl::ToUnderlying(result.error_value().domain_error()); } } else { FX_LOGS(INFO) << "WriteItem Success"; } // Quit the loop, thereby handing control back to the outer loop of actions being // iterated over. loop.Quit(); }); // Run the loop until the callback is resolved, at which point we can continue from here. loop.Run(); loop.ResetQuit(); } // If the `max_export_size` is 0, no export is possible, so just ignore this block. This check // isn't strictly necessary, but does avoid extra work down the line. if (conf.max_export_size() > 0) { // Create a 100Kb VMO to store the resulting export. In a real implementation, we would // likely receive the VMO representing the to-be-written file from file system like vfs of // fxfs. zx::vmo vmo; if (zx_status_t status = zx::vmo::create(conf.max_export_size(), 0, &vmo); status != ZX_OK) { FX_PLOGS(ERROR, status) << "Failed to create VMO"; return -1; } client->Export({std::move(vmo)}) .ThenExactlyOnce( [&](fidl::Result<examples_keyvaluestore_supportexports::Store::Export>& result) { // Quit the loop, thereby handing control back to the outer loop of actions being // iterated over, when we return from this callback. loop.Quit(); if (!result.is_ok()) { if (result.error_value().is_framework_error()) { FX_LOGS(ERROR) << "Unexpected FIDL framework error: " << result.error_value(); } else { FX_LOGS(INFO) << "Export Error: " << fidl::ToUnderlying(result.error_value().domain_error()); } return; } FX_LOGS(INFO) << "Export Success"; // Read the exported data (encoded in byte form as persistent FIDL) from the // returned VMO. In a real implementation, instead of reading the VMO, we would // merely forward it to some other storage-handling process. Doing this using a VMO, // rather than FIDL IPC, would save us frivolous reads and writes at each hop. size_t content_size = 0; zx::vmo vmo = std::move(result->filled()); if (vmo.get_prop_content_size(&content_size) != ZX_OK) { return; } std::vector<uint8_t> encoded_bytes; encoded_bytes.resize(content_size); if (vmo.read(encoded_bytes.data(), 0, content_size) != ZX_OK) { return; } // Decode the persistent FIDL that was just read from the file. fit::result exportable = fidl::Unpersist<examples_keyvaluestore_supportexports::Exportable>( cpp20::span(encoded_bytes)); if (exportable.is_error()) { FX_LOGS(ERROR) << "Failed to unpersist: " << exportable.error_value(); return; } if (!exportable->items().has_value()) { FX_LOGS(INFO) << "Expected items to be set"; return; } auto& items = exportable->items().value(); // Log some information about the exported data. FX_LOGS(INFO) << "Printing " << items.size() << " exported entries, which are:"; for (const auto& item : items) { FX_LOGS(INFO) << " * " << item.key(); } }); // Run the loop until the callback is resolved, at which point we can continue from here. loop.Run(); loop.ResetQuit(); } // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once // the referenced bug has been resolved, we can remove the sleep. sleep(2); return 0; }
伺服器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <fidl/examples.keyvaluestore.supportexports/cpp/fidl.h> #include <lib/async-loop/cpp/loop.h> #include <lib/async/cpp/task.h> #include <lib/component/outgoing/cpp/outgoing_directory.h> #include <lib/fidl/cpp/wire/channel.h> #include <lib/syslog/cpp/macros.h> #include <unistd.h> #include <algorithm> #include <re2/re2.h> // An implementation of the |Store| protocol. class StoreImpl final : public fidl::Server<examples_keyvaluestore_supportexports::Store> { public: // Bind this implementation to a channel. StoreImpl(async_dispatcher_t* dispatcher, fidl::ServerEnd<examples_keyvaluestore_supportexports::Store> server_end) : binding_(fidl::BindServer( dispatcher, std::move(server_end), this, [this](StoreImpl* impl, fidl::UnbindInfo info, fidl::ServerEnd<examples_keyvaluestore_supportexports::Store> server_end) { if (info.reason() != ::fidl::Reason::kPeerClosedWhileReading) { FX_LOGS(ERROR) << "Shutdown unexpectedly"; } delete this; })) {} void WriteItem(WriteItemRequest& request, WriteItemCompleter::Sync& completer) override { FX_LOGS(INFO) << "WriteItem request received"; auto key = request.attempt().key(); auto value = request.attempt().value(); // Validate the key. if (!RE2::FullMatch(key, "^[A-Za-z]\\w+[A-Za-z0-9]$")) { FX_LOGS(INFO) << "Write error: INVALID_KEY, For key: " << key; FX_LOGS(INFO) << "WriteItem response sent"; return completer.Reply( fit::error(examples_keyvaluestore_supportexports::WriteError::kInvalidKey)); } // Validate the value. if (value.empty()) { FX_LOGS(INFO) << "Write error: INVALID_VALUE, For key: " << key; FX_LOGS(INFO) << "WriteItem response sent"; return completer.Reply( fit::error(examples_keyvaluestore_supportexports::WriteError::kInvalidValue)); } if (key_value_store_.find(key) != key_value_store_.end()) { FX_LOGS(INFO) << "Write error: ALREADY_EXISTS, For key: " << key; FX_LOGS(INFO) << "WriteItem response sent"; return completer.Reply( fit::error(examples_keyvaluestore_supportexports::WriteError::kAlreadyExists)); } // Ensure that the value does not already exist in the store. key_value_store_.insert({key, value}); FX_LOGS(INFO) << "Wrote value at key: " << key; FX_LOGS(INFO) << "WriteItem response sent"; return completer.Reply(fit::ok()); } void Export(ExportRequest& request, ExportCompleter::Sync& completer) override { FX_LOGS(INFO) << "Export request received"; completer.Reply(Export(std::move(request.empty()))); FX_LOGS(INFO) << "Export response sent"; } void handle_unknown_method( fidl::UnknownMethodMetadata<examples_keyvaluestore_supportexports::Store> metadata, fidl::UnknownMethodCompleter::Sync& completer) override { FX_LOGS(WARNING) << "Received an unknown method with ordinal " << metadata.method_ordinal; } private: using ExportError = ::examples_keyvaluestore_supportexports::ExportError; using Exportable = ::examples_keyvaluestore_supportexports::Exportable; using Item = ::examples_keyvaluestore_supportexports::Item; fit::result<ExportError, zx::vmo> Export(zx::vmo vmo) { if (key_value_store_.empty()) { return fit::error(ExportError::kEmpty); } Exportable exportable; std::vector<Item> items; items.reserve(key_value_store_.size()); for (const auto& [k, v] : key_value_store_) { items.push_back(Item{{.key = k, .value = v}}); } std::sort(items.begin(), items.end(), [](const Item& a, const Item& b) { return a.key() < b.key(); }); exportable.items(std::move(items)); fit::result encoded = fidl::Persist(exportable); if (encoded.is_error()) { FX_LOGS(ERROR) << "Failed to encode in persistence convention: " << encoded.error_value(); return fit::error(ExportError::kUnknown); } size_t content_size = 0; if (vmo.get_prop_content_size(&content_size) != ZX_OK) { return fit::error(ExportError::kUnknown); } if (encoded->size() > content_size) { return fit::error(ExportError::kStorageTooSmall); } if (vmo.set_prop_content_size(encoded->size()) != ZX_OK) { return fit::error(ExportError::kUnknown); } if (vmo.write(encoded->data(), 0, encoded->size()) != ZX_OK) { return fit::error(ExportError::kUnknown); } return fit::ok(std::move(vmo)); } fidl::ServerBindingRef<examples_keyvaluestore_supportexports::Store> binding_; // The map that serves as the per-connection instance of the key-value store. std::unordered_map<std::string, std::vector<uint8_t>> key_value_store_ = {}; }; int main(int argc, char** argv) { FX_LOGS(INFO) << "Started"; // The event loop is used to asynchronously listen for incoming connections and requests from the // client. The following initializes the loop, and obtains the dispatcher, which will be used when // binding the server implementation to a channel. async::Loop loop(&kAsyncLoopConfigNeverAttachToThread); async_dispatcher_t* dispatcher = loop.dispatcher(); // Create an |OutgoingDirectory| instance. // // The |component::OutgoingDirectory| class serves the outgoing directory for our component. This // directory is where the outgoing FIDL protocols are installed so that they can be provided to // other components. component::OutgoingDirectory outgoing = component::OutgoingDirectory(dispatcher); // The `ServeFromStartupInfo()` function sets up the outgoing directory with the startup handle. // The startup handle is a handle provided to every component by the system, so that they can // serve capabilities (e.g. FIDL protocols) to other components. zx::result result = outgoing.ServeFromStartupInfo(); if (result.is_error()) { FX_LOGS(ERROR) << "Failed to serve outgoing directory: " << result.status_string(); return -1; } // Register a handler for components trying to connect to |Store|. result = outgoing.AddUnmanagedProtocol<examples_keyvaluestore_supportexports::Store>( [dispatcher](fidl::ServerEnd<examples_keyvaluestore_supportexports::Store> server_end) { // Create an instance of our StoreImpl that destroys itself when the connection closes. new StoreImpl(dispatcher, std::move(server_end)); }); if (result.is_error()) { FX_LOGS(ERROR) << "Failed to add Store protocol: " << result.status_string(); return -1; } // Everything is wired up. Sit back and run the loop until an incoming connection wakes us up. FX_LOGS(INFO) << "Listening for incoming connections"; loop.Run(); return 0; }
C++ (Wire)
用戶端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <fidl/examples.keyvaluestore.supportexports/cpp/wire.h> #include <lib/async-loop/cpp/loop.h> #include <lib/component/incoming/cpp/protocol.h> #include <lib/syslog/cpp/macros.h> #include <unistd.h> #include <examples/fidl/new/key_value_store/support_exports/cpp_wire/client/config.h> #include <src/lib/files/file.h> #include <src/lib/fxl/strings/string_printf.h> int main(int argc, const char** argv) { FX_LOGS(INFO) << "Started"; // Retrieve component configuration. auto conf = config::Config::TakeFromStartupHandle(); // Start up an async loop and dispatcher. async::Loop loop(&kAsyncLoopConfigNeverAttachToThread); async_dispatcher_t* dispatcher = loop.dispatcher(); // Connect to the protocol inside the component's namespace. This can fail so it's wrapped in a // |zx::result| and it must be checked for errors. zx::result client_end = component::Connect<examples_keyvaluestore_supportexports::Store>(); if (!client_end.is_ok()) { FX_LOGS(ERROR) << "Synchronous error when connecting to the |Store| protocol: " << client_end.status_string(); return -1; } // Create an asynchronous client using the newly-established connection. fidl::WireClient client(std::move(*client_end), dispatcher); FX_LOGS(INFO) << "Outgoing connection enabled"; for (const auto& key : conf.write_items()) { std::string text; if (!files::ReadFileToString(fxl::StringPrintf("/pkg/data/%s.txt", key.c_str()), &text)) { FX_LOGS(ERROR) << "It looks like the correct `resource` dependency has not been packaged"; break; } auto value = std::vector<uint8_t>(text.begin(), text.end()); client ->WriteItem( {fidl::StringView::FromExternal(key), fidl::VectorView<uint8_t>::FromExternal(value)}) .ThenExactlyOnce( [&](fidl::WireUnownedResult<examples_keyvaluestore_supportexports::Store::WriteItem>& result) { if (!result.ok()) { FX_LOGS(ERROR) << "Unexpected framework error"; } else if (result->is_error()) { FX_LOGS(INFO) << "WriteItem Error: " << fidl::ToUnderlying(result->error_value()); } else { FX_LOGS(INFO) << "WriteItem Success"; } // Quit the loop, thereby handing control back to the outer loop of actions being // iterated over. loop.Quit(); }); // Run the loop until the callback is resolved, at which point we can continue from here. loop.Run(); loop.ResetQuit(); } // If the `max_export_size` is 0, no export is possible, so just ignore this block. This check // isn't strictly necessary, but does avoid extra work down the line. if (conf.max_export_size() > 0) { // Create a 100Kb VMO to store the resulting export. In a real implementation, we would // likely receive the VMO representing the to-be-written file from file system like vfs of // fxfs. zx::vmo vmo; if (zx_status_t status = zx::vmo::create(conf.max_export_size(), 0, &vmo); status != ZX_OK) { FX_PLOGS(ERROR, status) << "Failed to create VMO"; return -1; } client->Export(std::move(vmo)) .ThenExactlyOnce( [&](fidl::WireUnownedResult<examples_keyvaluestore_supportexports::Store::Export>& result) { // Quit the loop, thereby handing control back to the outer loop of actions being // iterated over, when we return from this callback. loop.Quit(); if (!result.ok()) { FX_LOGS(ERROR) << "Unexpected FIDL framework error: " << result.error(); return; } if (!result->is_ok()) { FX_LOGS(INFO) << "Export Error: " << fidl::ToUnderlying(result->error_value()); return; } FX_LOGS(INFO) << "Export Success"; // Read the exported data (encoded in byte form as persistent FIDL) from the // returned VMO. In a real implementation, instead of reading the VMO, we would // merely forward it to some other storage-handling process. Doing this using a VMO, // rather than FIDL IPC, would save us frivolous reads and writes at each hop. size_t content_size = 0; zx::vmo vmo = std::move(result->value()->filled); if (vmo.get_prop_content_size(&content_size) != ZX_OK) { return; } std::vector<uint8_t> encoded_bytes; encoded_bytes.resize(content_size); if (vmo.read(encoded_bytes.data(), 0, content_size) != ZX_OK) { return; } // Decode the persistent FIDL that was just read from the file. fit::result exportable = fidl::InplaceUnpersist<examples_keyvaluestore_supportexports::wire::Exportable>( cpp20::span(encoded_bytes)); if (exportable.is_error()) { FX_LOGS(ERROR) << "Failed to unpersist: " << exportable.error_value(); return; } if (!exportable->has_items()) { FX_LOGS(INFO) << "Expected items to be set"; return; } auto& items = exportable->items(); // Log some information about the exported data. FX_LOGS(INFO) << "Printing " << items.size() << " exported entries, which are:"; for (const auto& item : items) { FX_LOGS(INFO) << " * " << item.key.get(); } }); // Run the loop until the callback is resolved, at which point we can continue from here. loop.Run(); loop.ResetQuit(); } // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once // the referenced bug has been resolved, we can remove the sleep. sleep(2); return 0; }
伺服器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <fidl/examples.keyvaluestore.supportexports/cpp/wire.h> #include <lib/async-loop/cpp/loop.h> #include <lib/async/cpp/task.h> #include <lib/component/outgoing/cpp/outgoing_directory.h> #include <lib/fidl/cpp/wire/channel.h> #include <lib/syslog/cpp/macros.h> #include <unistd.h> #include <algorithm> #include <re2/re2.h> // An implementation of the |Store| protocol. class StoreImpl final : public fidl::WireServer<examples_keyvaluestore_supportexports::Store> { public: // Bind this implementation to a channel. StoreImpl(async_dispatcher_t* dispatcher, fidl::ServerEnd<examples_keyvaluestore_supportexports::Store> server_end) : binding_(fidl::BindServer( dispatcher, std::move(server_end), this, [this](StoreImpl* impl, fidl::UnbindInfo info, fidl::ServerEnd<examples_keyvaluestore_supportexports::Store> server_end) { if (info.reason() != ::fidl::Reason::kPeerClosedWhileReading) { FX_LOGS(ERROR) << "Shutdown unexpectedly"; } delete this; })) {} void WriteItem(WriteItemRequestView request, WriteItemCompleter::Sync& completer) override { FX_LOGS(INFO) << "WriteItem request received"; std::string key{request->attempt.key.get()}; std::vector<uint8_t> value{request->attempt.value.begin(), request->attempt.value.end()}; // Validate the key. if (!RE2::FullMatch(key, "^[A-Za-z]\\w+[A-Za-z0-9]$")) { FX_LOGS(INFO) << "Write error: INVALID_KEY, For key: " << key; FX_LOGS(INFO) << "WriteItem response sent"; return completer.Reply( fit::error(examples_keyvaluestore_supportexports::WriteError::kInvalidKey)); } // Validate the value. if (value.empty()) { FX_LOGS(INFO) << "Write error: INVALID_VALUE, For key: " << key; FX_LOGS(INFO) << "WriteItem response sent"; return completer.Reply( fit::error(examples_keyvaluestore_supportexports::WriteError::kInvalidValue)); } if (key_value_store_.find(key) != key_value_store_.end()) { FX_LOGS(INFO) << "Write error: ALREADY_EXISTS, For key: " << key; FX_LOGS(INFO) << "WriteItem response sent"; return completer.Reply( fit::error(examples_keyvaluestore_supportexports::WriteError::kAlreadyExists)); } // Ensure that the value does not already exist in the store. key_value_store_.insert({key, value}); FX_LOGS(INFO) << "Wrote value at key: " << key; FX_LOGS(INFO) << "WriteItem response sent"; return completer.Reply(fit::success()); } void Export(ExportRequestView request, ExportCompleter::Sync& completer) override { FX_LOGS(INFO) << "Export request received"; fit::result result = Export(std::move(request->empty)); if (result.is_ok()) { completer.ReplySuccess(std::move(result.value())); } else { completer.ReplyError(result.error_value()); } FX_LOGS(INFO) << "Export response sent"; } using ExportError = ::examples_keyvaluestore_supportexports::wire::ExportError; using Exportable = ::examples_keyvaluestore_supportexports::wire::Exportable; using Item = ::examples_keyvaluestore_supportexports::wire::Item; fit::result<ExportError, zx::vmo> Export(zx::vmo vmo) { if (key_value_store_.empty()) { return fit::error(ExportError::kEmpty); } fidl::Arena arena; fidl::VectorView<Item> items; items.Allocate(arena, key_value_store_.size()); size_t count = 0; for (auto& [k, v] : key_value_store_) { // Create a wire |Item| object that borrows from |k| and |v|. // Since |k| and |v| are references into the long living |key_value_store_|, // while |items| only live within the current function scope, // this operation is safe. items[count] = Item{ .key = fidl::StringView::FromExternal(k), .value = fidl::VectorView<uint8_t>::FromExternal(v), }; count++; } std::sort(items.begin(), items.end(), [](const Item& a, const Item& b) { return a.key.get() < b.key.get(); }); Exportable exportable = Exportable::Builder(arena).items(items).Build(); fit::result encoded = fidl::Persist(exportable); if (encoded.is_error()) { FX_LOGS(ERROR) << "Failed to encode in persistence convention: " << encoded.error_value(); return fit::error(ExportError::kUnknown); } size_t content_size = 0; if (vmo.get_prop_content_size(&content_size) != ZX_OK) { return fit::error(ExportError::kUnknown); } if (encoded->size() > content_size) { return fit::error(ExportError::kStorageTooSmall); } if (vmo.set_prop_content_size(encoded->size()) != ZX_OK) { return fit::error(ExportError::kUnknown); } if (vmo.write(encoded->data(), 0, encoded->size()) != ZX_OK) { return fit::error(ExportError::kUnknown); } return fit::ok(std::move(vmo)); } void handle_unknown_method( fidl::UnknownMethodMetadata<examples_keyvaluestore_supportexports::Store> metadata, fidl::UnknownMethodCompleter::Sync& completer) override { FX_LOGS(WARNING) << "Received an unknown method with ordinal " << metadata.method_ordinal; } private: fidl::ServerBindingRef<examples_keyvaluestore_supportexports::Store> binding_; // The map that serves as the per-connection instance of the key-value store. // // Out-of-line references in wire types are always mutable. Thus the // |const std::vector<uint8_t>| from the baseline needs to be changed to // non-const as we're making a vector view pointing to it during |Export|, // even though in practice the value is never mutated. std::unordered_map<std::string, std::vector<uint8_t>> key_value_store_ = {}; }; int main(int argc, char** argv) { FX_LOGS(INFO) << "Started"; // The event loop is used to asynchronously listen for incoming connections and requests from the // client. The following initializes the loop, and obtains the dispatcher, which will be used when // binding the server implementation to a channel. async::Loop loop(&kAsyncLoopConfigNeverAttachToThread); async_dispatcher_t* dispatcher = loop.dispatcher(); // Create an |OutgoingDirectory| instance. // // The |component::OutgoingDirectory| class serves the outgoing directory for our component. This // directory is where the outgoing FIDL protocols are installed so that they can be provided to // other components. component::OutgoingDirectory outgoing = component::OutgoingDirectory(dispatcher); // The `ServeFromStartupInfo()` function sets up the outgoing directory with the startup handle. // The startup handle is a handle provided to every component by the system, so that they can // serve capabilities (e.g. FIDL protocols) to other components. zx::result result = outgoing.ServeFromStartupInfo(); if (result.is_error()) { FX_LOGS(ERROR) << "Failed to serve outgoing directory: " << result.status_string(); return -1; } // Register a handler for components trying to connect to |Store|. result = outgoing.AddUnmanagedProtocol<examples_keyvaluestore_supportexports::Store>( [dispatcher](fidl::ServerEnd<examples_keyvaluestore_supportexports::Store> server_end) { // Create an instance of our StoreImpl that destroys itself when the connection closes. new StoreImpl(dispatcher, std::move(server_end)); }); if (result.is_error()) { FX_LOGS(ERROR) << "Failed to add Store protocol: " << result.status_string(); return -1; } // Everything is wired up. Sit back and run the loop until an incoming connection wakes us up. FX_LOGS(INFO) << "Listening for incoming connections"; loop.Run(); return 0; }