在本示例中,我们先创建一个 2D 线条绘制画布,然后继续 通过 FIDL 中常用的各种数据流模式来增强其功能, 例如在连接两端实现流控制,以及改进 从而提高性能
使用入门
此基准案例展示了简单画布的端到端实现
使用 FIDL。此设计指定了 Canvas
协议,该协议允许客户端
通过 AddLine
方法向画布添加线条,并接收绘制更新
通过 OnDrawn
事件从服务器发送。
我们在这里设计的协议是可行的,但就这两者而言并不是最优的
性能和流控制。例如,我们当前的“刷新率”是
每秒 1 帧如果我们决定以 60 帧的帧速率进行更新,会出现什么情况?
(即大约每 16 毫秒,而不是每秒一次)?有没有可能
OnDrawn
事件会让客户感到无所适从?反过来,如果将
客户端加载会一次发送多个 AddLine
请求(可能是在加载这些请求之后)
?服务器现在是否会在负载下被压迫?
这种不受限制的实现最好视为首次传递 - 相对来说, 这个简单协议演示了某些功能, 进行一些改进以获得最佳性能,尤其是在压力下。
首先,我们需要定义接口定义和自动化测试框架。《FIDL》 CML 和领域接口定义设置一个基架, 实现可以使用:
FIDL
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. library examples.canvas.baseline; /// A point in 2D space. type Point = struct { x int64; y int64; }; /// A line in 2D space. alias Line = array<Point, 2>; /// A bounding box in 2D space. This is the result of "drawing" operations on our canvas, and what /// the server reports back to the client. These bounds are sufficient to contain all of the /// lines (inclusive) on a canvas at a given time. type BoundingBox = struct { top_left Point; bottom_right Point; }; /// Manages a single instance of a canvas. Each session of this protocol is responsible for a new /// canvas. @discoverable open protocol Instance { /// Add a line to the canvas. flexible AddLine(struct { line Line; }); /// Update the client with the latest drawing state. The server makes no guarantees about how /// often this event occurs - it could occur multiple times per board state, for example. flexible -> OnDrawn(BoundingBox); };
CML
客户端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { include: [ "syslog/client.shard.cml" ], program: { runner: "elf", binary: "bin/client_bin", }, use: [ { protocol: "examples.canvas.baseline.Instance" }, ], config: { // A script for the client to follow. Entries in the script may take one of two forms: a // pair of signed-integer coordinates like "-2,15:4,5", the string "PUSH", or the string // "WAIT". The former builds entries for a call to `AddLines(...)`, "PUSH" makes the // `AddLines` call, and "WAIT" execution until the next `->OnDrawn(...)` event is received. // // TODO(https://fxbug.dev/42178362): It would absolve individual language implementations of a great // deal of string parsing if we were able to use a vector of `union { Point; Push, Wait}` // here. script: { type: "vector", max_count: 100, element: { type: "string", max_size: 64, }, }, }, }
服务器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { include: [ "syslog/client.shard.cml" ], program: { runner: "elf", binary: "bin/server_bin", }, capabilities: [ { protocol: "examples.canvas.baseline.Instance" }, ], expose: [ { protocol: "examples.canvas.baseline.Instance", from: "self", }, ], }
大区
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { children: [ { name: "client", url: "#meta/client.cm", }, { name: "server", url: "#meta/server.cm", }, ], offer: [ // Route the protocol under test from the server to the client. { protocol: "examples.canvas.baseline.Instance", from: "#server", to: "#client", }, // Route diagnostics support to all children. { protocol: [ "fuchsia.inspect.InspectSink", "fuchsia.logger.LogSink", ], from: "parent", to: [ "#client", "#server", ], }, ], }
然后,可以使用任何受支持的语言编写客户端和服务器实现:
Rust
客户端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. use anyhow::{format_err, Context as _, Error}; use config::Config; use fidl_examples_canvas_baseline::{InstanceEvent, InstanceMarker, Point}; use fuchsia_component::client::connect_to_protocol; use futures::TryStreamExt; use std::{thread, time}; #[fuchsia::main] async fn main() -> Result<(), Error> { println!("Started"); // Load the structured config values passed to this component at startup. let config = Config::take_from_startup_handle(); // Use the Component Framework runtime to connect to the newly spun up server component. We wrap // our retained client end in a proxy object that lets us asynchronously send Instance requests // across the channel. let instance = connect_to_protocol::<InstanceMarker>()?; println!("Outgoing connection enabled"); for action in config.script.into_iter() { // If the next action in the script is to "WAIT", block until an OnDrawn event is received // from the server. if action == "WAIT" { let mut event_stream = instance.take_event_stream(); loop { match event_stream .try_next() .await .context("Error getting event response from proxy")? .ok_or_else(|| format_err!("Proxy sent no events"))? { InstanceEvent::OnDrawn { top_left, bottom_right } => { println!( "OnDrawn event received: top_left: {:?}, bottom_right: {:?}", top_left, bottom_right ); break; } InstanceEvent::_UnknownEvent { ordinal, .. } => { println!("Received an unknown event with ordinal {ordinal}"); } } } continue; } // If the action is not a "WAIT", we need to draw a line instead. Parse the string input, // making two points out of it. let mut points = action .split(":") .map(|point| { let integers = point .split(",") .map(|integer| integer.parse::<i64>().unwrap()) .collect::<Vec<i64>>(); Point { x: integers[0], y: integers[1] } }) .collect::<Vec<Point>>(); // Assemble a line from the two points. let from = points.pop().ok_or(format_err!("line requires 2 points, but has 0"))?; let to = points.pop().ok_or(format_err!("line requires 2 points, but has 1"))?; let line = [from, to]; // Draw a line to the canvas by calling the server, using the two points we just parsed // above as arguments. instance.add_line(&line)?; println!("AddLine request sent: {:?}", line); } // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the // referenced bug has been resolved, we can remove the sleep. thread::sleep(time::Duration::from_secs(2)); Ok(()) }
服务器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. use anyhow::{Context as _, Error}; use fidl::endpoints::RequestStream as _; use fidl_examples_canvas_baseline::{BoundingBox, InstanceRequest, InstanceRequestStream, Point}; use fuchsia_async::{Time, Timer}; use fuchsia_component::server::ServiceFs; use fuchsia_zircon::{self as zx}; use futures::future::join; use futures::prelude::*; use std::sync::{Arc, Mutex}; // A struct that stores the two things we care about for this example: the bounding box the lines // that have been added thus far, and bit to track whether or not there have been changes since the // last `OnDrawn` event. #[derive(Debug)] struct CanvasState { // Tracks whether there has been a change since the last send, to prevent redundant updates. changed: bool, bounding_box: BoundingBox, } /// Handler for the `AddLine` method. fn add_line(state: &mut CanvasState, line: [Point; 2]) { // Update the bounding box to account for the new lines we've just "added" to the canvas. let bounds = &mut state.bounding_box; for point in line { if point.x < bounds.top_left.x { bounds.top_left.x = point.x; } if point.y > bounds.top_left.y { bounds.top_left.y = point.y; } if point.x > bounds.bottom_right.x { bounds.bottom_right.x = point.x; } if point.y < bounds.bottom_right.y { bounds.bottom_right.y = point.y; } } // Mark the state as "dirty", so that an update is sent back to the client on the next tick. state.changed = true } /// Creates a new instance of the server, paired to a single client across a zircon channel. async fn run_server(stream: InstanceRequestStream) -> Result<(), Error> { // Create a new in-memory state store for the state of the canvas. The store will live for the // lifetime of the connection between the server and this particular client. let state = Arc::new(Mutex::new(CanvasState { changed: true, bounding_box: BoundingBox { top_left: Point { x: 0, y: 0 }, bottom_right: Point { x: 0, y: 0 }, }, })); // Take ownership of the control_handle from the stream, which will allow us to push events from // a different async task. let control_handle = stream.control_handle(); // A separate watcher task periodically "draws" the canvas, and notifies the client of the new // state. We'll need a cloned reference to the canvas state to be accessible from the new // task. let state_ref = state.clone(); let update_sender = || async move { loop { // Our server sends one update per second. Timer::new(Time::after(zx::Duration::from_seconds(1))).await; let mut state = state_ref.lock().unwrap(); if !state.changed { continue; } // After acquiring the lock, this is where we would draw the actual lines. Since this is // just an example, we'll avoid doing the actual rendering, and simply send the bounding // box to the client instead. let bounds = state.bounding_box; match control_handle.send_on_drawn(&bounds.top_left, &bounds.bottom_right) { Ok(_) => println!( "OnDrawn event sent: top_left: {:?}, bottom_right: {:?}", bounds.top_left, bounds.bottom_right ), Err(_) => return, } // Reset the change tracker. state.changed = false } }; // Handle requests on the protocol sequentially - a new request is not handled until its // predecessor has been processed. let state_ref = &state; let request_handler = stream.map(|result| result.context("failed request")).try_for_each(|request| async move { // Match based on the method being invoked. match request { InstanceRequest::AddLine { line, .. } => { println!("AddLine request received: {:?}", line); add_line(&mut state_ref.lock().unwrap(), line); } InstanceRequest::_UnknownMethod { ordinal, .. } => { println!("Received an unknown method with ordinal {ordinal}"); } } Ok(()) }); // This line will only be reached if the server errors out. The stream will await indefinitely, // thereby creating a long-lived server. Here, we first wait for the updater task to realize the // connection has died, then bubble up the error. join(request_handler, update_sender()).await.0 } // A helper enum that allows us to treat a `Instance` service instance as a value. enum IncomingService { Instance(InstanceRequestStream), } #[fuchsia::main] async fn main() -> Result<(), Error> { println!("Started"); // Add a discoverable instance of our `Instance` protocol - this will allow the client to see // the server and connect to it. let mut fs = ServiceFs::new_local(); fs.dir("svc").add_fidl_service(IncomingService::Instance); fs.take_and_serve_directory_handle()?; println!("Listening for incoming connections"); // The maximum number of concurrent clients that may be served by this process. const MAX_CONCURRENT: usize = 10; // Serve each connection simultaneously, up to the `MAX_CONCURRENT` limit. fs.for_each_concurrent(MAX_CONCURRENT, |IncomingService::Instance(stream)| { run_server(stream).unwrap_or_else(|e| println!("{:?}", e)) }) .await; Ok(()) }
C++(自然)
客户端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <fidl/examples.canvas.baseline/cpp/fidl.h> #include <lib/async-loop/cpp/loop.h> #include <lib/component/incoming/cpp/protocol.h> #include <lib/syslog/cpp/macros.h> #include <unistd.h> #include <charconv> #include <examples/fidl/new/canvas/baseline/cpp_natural/client/config.h> // The |EventHandler| is a derived class that we pass into the |fidl::WireClient| to handle incoming // events asynchronously. class EventHandler : public fidl::AsyncEventHandler<examples_canvas_baseline::Instance> { public: // Handler for |OnDrawn| events sent from the server. void OnDrawn(fidl::Event<examples_canvas_baseline::Instance::OnDrawn>& event) override { ::examples_canvas_baseline::Point top_left = event.top_left(); ::examples_canvas_baseline::Point bottom_right = event.bottom_right(); FX_LOGS(INFO) << "OnDrawn event received: top_left: Point { x: " << top_left.x() << ", y: " << top_left.y() << " }, bottom_right: Point { x: " << bottom_right.x() << ", y: " << bottom_right.y() << " }"; loop_.Quit(); } void on_fidl_error(fidl::UnbindInfo error) override { FX_LOGS(ERROR) << error; } void handle_unknown_event( fidl::UnknownEventMetadata<examples_canvas_baseline::Instance> metadata) override { FX_LOGS(WARNING) << "Received an unknown event with ordinal " << metadata.event_ordinal; } explicit EventHandler(async::Loop& loop) : loop_(loop) {} private: async::Loop& loop_; }; // A helper function that takes a coordinate in string form, like "123,-456", and parses it into a // a struct of the form |{ in64 x; int64 y; }|. ::examples_canvas_baseline::Point ParsePoint(std::string_view input) { int64_t x = 0; int64_t y = 0; size_t index = input.find(','); if (index != std::string::npos) { std::from_chars(input.data(), input.data() + index, x); std::from_chars(input.data() + index + 1, input.data() + input.length(), y); } return ::examples_canvas_baseline::Point(x, y); } using Line = ::std::array<::examples_canvas_baseline::Point, 2>; // A helper function that takes a coordinate pair in string form, like "1,2:-3,-4", and parses it // into an array of 2 |Point| structs. Line ParseLine(const std::string& action) { auto input = std::string_view(action); size_t index = input.find(':'); if (index != std::string::npos) { return {ParsePoint(input.substr(0, index)), ParsePoint(input.substr(index + 1))}; } return {}; } int main(int argc, const char** argv) { FX_LOGS(INFO) << "Started"; // Retrieve component configuration. auto conf = config::Config::TakeFromStartupHandle(); // Start up an async loop and dispatcher. async::Loop loop(&kAsyncLoopConfigNeverAttachToThread); async_dispatcher_t* dispatcher = loop.dispatcher(); // Connect to the protocol inside the component's namespace. This can fail so it's wrapped in a // |zx::result| and it must be checked for errors. zx::result client_end = component::Connect<examples_canvas_baseline::Instance>(); if (!client_end.is_ok()) { FX_LOGS(ERROR) << "Synchronous error when connecting to the |Instance| protocol: " << client_end.status_string(); return -1; } // Create an instance of the event handler. EventHandler event_handler(loop); // Create an asynchronous client using the newly-established connection. fidl::Client client(std::move(*client_end), dispatcher, &event_handler); FX_LOGS(INFO) << "Outgoing connection enabled"; for (const auto& action : conf.script()) { // If the next action in the script is to "WAIT", block until an |OnDrawn| event is received // from the server. if (action == "WAIT") { loop.Run(); loop.ResetQuit(); continue; } // Draw a line to the canvas by calling the server, using the two points we just parsed // above as arguments. Line line = ParseLine(action); fit::result<fidl::Error> result = client->AddLine(line); if (!result.is_ok()) { // Check that our one-way call was enqueued successfully, and handle the error appropriately. // In the case of this example, there is nothing we can do to recover here, except to log an // error and exit the program. FX_LOGS(ERROR) << "Could not send AddLine request: " << result.error_value(); return -1; } FX_LOGS(INFO) << "AddLine request sent: [Point { x: " << line[1].x() << ", y: " << line[1].y() << " }, Point { x: " << line[0].x() << ", y: " << line[0].y() << " }]"; } // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the // referenced bug has been resolved, we can remove the sleep. sleep(2); return 0; }
服务器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <fidl/examples.canvas.baseline/cpp/fidl.h> #include <lib/async-loop/cpp/loop.h> #include <lib/async/cpp/task.h> #include <lib/component/outgoing/cpp/outgoing_directory.h> #include <lib/fidl/cpp/wire/channel.h> #include <lib/syslog/cpp/macros.h> #include <unistd.h> #include <src/lib/fxl/macros.h> #include <src/lib/fxl/memory/weak_ptr.h> // A struct that stores the two things we care about for this example: the set of lines, and the // bounding box that contains them. struct CanvasState { // Tracks whether there has been a change since the last send, to prevent redundant updates. bool changed = true; examples_canvas_baseline::BoundingBox bounding_box; }; // An implementation of the |Instance| protocol. class InstanceImpl final : public fidl::Server<examples_canvas_baseline::Instance> { public: // Bind this implementation to a channel. InstanceImpl(async_dispatcher_t* dispatcher, fidl::ServerEnd<examples_canvas_baseline::Instance> server_end) : binding_(dispatcher, std::move(server_end), this, std::mem_fn(&InstanceImpl::OnFidlClosed)), weak_factory_(this) { // Start the update timer on startup. Our server sends one update per second ScheduleOnDrawnEvent(dispatcher, zx::sec(1)); } void OnFidlClosed(fidl::UnbindInfo info) { if (info.reason() != ::fidl::Reason::kPeerClosedWhileReading) { FX_LOGS(ERROR) << "Shutdown unexpectedly"; } delete this; } void AddLine(AddLineRequest& request, AddLineCompleter::Sync& completer) override { auto points = request.line(); FX_LOGS(INFO) << "AddLine request received: [Point { x: " << points[1].x() << ", y: " << points[1].y() << " }, Point { x: " << points[0].x() << ", y: " << points[0].y() << " }]"; // Update the bounding box to account for the new line we've just "added" to the canvas. auto& bounds = state_.bounding_box; for (const auto& point : request.line()) { if (point.x() < bounds.top_left().x()) { bounds.top_left().x() = point.x(); } if (point.y() > bounds.top_left().y()) { bounds.top_left().y() = point.y(); } if (point.x() > bounds.bottom_right().x()) { bounds.bottom_right().x() = point.x(); } if (point.y() < bounds.bottom_right().y()) { bounds.bottom_right().y() = point.y(); } } // Mark the state as "dirty", so that an update is sent back to the client on the next |OnDrawn| // event. state_.changed = true; } void handle_unknown_method( fidl::UnknownMethodMetadata<examples_canvas_baseline::Instance> metadata, fidl::UnknownMethodCompleter::Sync& completer) override { FX_LOGS(WARNING) << "Received an unknown method with ordinal " << metadata.method_ordinal; } private: // Each scheduled update waits for the allotted amount of time, sends an update if something has // changed, and schedules the next update. void ScheduleOnDrawnEvent(async_dispatcher_t* dispatcher, zx::duration after) { async::PostDelayedTask( dispatcher, [&, dispatcher, after, weak = weak_factory_.GetWeakPtr()] { // Halt execution if the binding has been deallocated already. if (!weak) { return; } // Schedule the next update if the binding still exists. weak->ScheduleOnDrawnEvent(dispatcher, after); // No need to send an update if nothing has changed since the last one. if (!weak->state_.changed) { return; } // This is where we would draw the actual lines. Since this is just an example, we'll // avoid doing the actual rendering, and simply send the bounding box to the client // instead. auto result = fidl::SendEvent(binding_)->OnDrawn(state_.bounding_box); if (!result.is_ok()) { return; } auto top_left = state_.bounding_box.top_left(); auto bottom_right = state_.bounding_box.bottom_right(); FX_LOGS(INFO) << "OnDrawn event sent: top_left: Point { x: " << top_left.x() << ", y: " << top_left.y() << " }, bottom_right: Point { x: " << bottom_right.x() << ", y: " << bottom_right.y() << " }"; // Reset the change tracker. state_.changed = false; }, after); } fidl::ServerBinding<examples_canvas_baseline::Instance> binding_; CanvasState state_ = CanvasState{}; // Generates weak references to this object, which are appropriate to pass into asynchronous // callbacks that need to access this object. The references are automatically invalidated // if this object is destroyed. fxl::WeakPtrFactory<InstanceImpl> weak_factory_; }; int main(int argc, char** argv) { FX_LOGS(INFO) << "Started"; // The event loop is used to asynchronously listen for incoming connections and requests from the // client. The following initializes the loop, and obtains the dispatcher, which will be used when // binding the server implementation to a channel. async::Loop loop(&kAsyncLoopConfigNeverAttachToThread); async_dispatcher_t* dispatcher = loop.dispatcher(); // Create an |OutgoingDirectory| instance. // // The |component::OutgoingDirectory| class serves the outgoing directory for our component. This // directory is where the outgoing FIDL protocols are installed so that they can be provided to // other components. component::OutgoingDirectory outgoing = component::OutgoingDirectory(dispatcher); // The `ServeFromStartupInfo()` function sets up the outgoing directory with the startup handle. // The startup handle is a handle provided to every component by the system, so that they can // serve capabilities (e.g. FIDL protocols) to other components. zx::result result = outgoing.ServeFromStartupInfo(); if (result.is_error()) { FX_LOGS(ERROR) << "Failed to serve outgoing directory: " << result.status_string(); return -1; } // Register a handler for components trying to connect to |examples.canvas.baseline.Instance|. result = outgoing.AddUnmanagedProtocol<examples_canvas_baseline::Instance>( [dispatcher](fidl::ServerEnd<examples_canvas_baseline::Instance> server_end) { // Create an instance of our InstanceImpl that destroys itself when the connection closes. new InstanceImpl(dispatcher, std::move(server_end)); }); if (result.is_error()) { FX_LOGS(ERROR) << "Failed to add Instance protocol: " << result.status_string(); return -1; } // Everything is wired up. Sit back and run the loop until an incoming connection wakes us up. FX_LOGS(INFO) << "Listening for incoming connections"; loop.Run(); return 0; }
C++(有线)
客户端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <fidl/examples.canvas.baseline/cpp/wire.h> #include <lib/async-loop/cpp/loop.h> #include <lib/component/incoming/cpp/protocol.h> #include <lib/syslog/cpp/macros.h> #include <unistd.h> #include <charconv> #include <examples/fidl/new/canvas/baseline/cpp_wire/client/config.h> // The |EventHandler| is a derived class that we pass into the |fidl::WireClient| to handle incoming // events asynchronously. class EventHandler : public fidl::WireAsyncEventHandler<examples_canvas_baseline::Instance> { public: // Handler for |OnDrawn| events sent from the server. void OnDrawn(fidl::WireEvent<examples_canvas_baseline::Instance::OnDrawn>* event) override { ::examples_canvas_baseline::wire::Point top_left = event->top_left; ::examples_canvas_baseline::wire::Point bottom_right = event->bottom_right; FX_LOGS(INFO) << "OnDrawn event received: top_left: Point { x: " << top_left.x << ", y: " << top_left.y << " }, bottom_right: Point { x: " << bottom_right.x << ", y: " << bottom_right.y << " }"; loop_.Quit(); } void on_fidl_error(fidl::UnbindInfo error) override { FX_LOGS(ERROR) << error; } void handle_unknown_event( fidl::UnknownEventMetadata<examples_canvas_baseline::Instance> metadata) override { FX_LOGS(WARNING) << "Received an unknown event with ordinal " << metadata.event_ordinal; } explicit EventHandler(async::Loop& loop) : loop_(loop) {} private: async::Loop& loop_; }; // A helper function that takes a coordinate in string form, like "123,-456", and parses it into a // a struct of the form |{ in64 x; int64 y; }|. ::examples_canvas_baseline::wire::Point ParsePoint(std::string_view input) { int64_t x = 0; int64_t y = 0; size_t index = input.find(','); if (index != std::string::npos) { std::from_chars(input.data(), input.data() + index, x); std::from_chars(input.data() + index + 1, input.data() + input.length(), y); } return ::examples_canvas_baseline::wire::Point{.x = x, .y = y}; } using Line = ::fidl::Array<::examples_canvas_baseline::wire::Point, 2>; // A helper function that takes a coordinate pair in string form, like "1,2:-3,-4", and parses it // into an array of 2 |Point| structs. Line ParseLine(const std::string& action) { auto input = std::string_view(action); size_t index = input.find(':'); if (index != std::string::npos) { return {ParsePoint(input.substr(0, index)), ParsePoint(input.substr(index + 1))}; } return {}; } int main(int argc, const char** argv) { FX_LOGS(INFO) << "Started"; // Retrieve component configuration. auto conf = config::Config::TakeFromStartupHandle(); // Start up an async loop and dispatcher. async::Loop loop(&kAsyncLoopConfigNeverAttachToThread); async_dispatcher_t* dispatcher = loop.dispatcher(); // Connect to the protocol inside the component's namespace. This can fail so it's wrapped in a // |zx::result| and it must be checked for errors. zx::result client_end = component::Connect<examples_canvas_baseline::Instance>(); if (!client_end.is_ok()) { FX_LOGS(ERROR) << "Synchronous error when connecting to the |Instance| protocol: " << client_end.status_string(); return -1; } // Create an instance of the event handler. EventHandler event_handler(loop); // Create an asynchronous client using the newly-established connection. fidl::WireClient client(std::move(*client_end), dispatcher, &event_handler); FX_LOGS(INFO) << "Outgoing connection enabled"; for (const auto& action : conf.script()) { // If the next action in the script is to "WAIT", block until an |OnDrawn| event is received // from the server. if (action == "WAIT") { loop.Run(); loop.ResetQuit(); continue; } // Draw a line to the canvas by calling the server, using the two points we just parsed // above as arguments. Line line = ParseLine(action); fidl::Status status = client->AddLine(line); if (!status.ok()) { // Check that our one-way call was enqueued successfully, and handle the error appropriately. // In the case of this example, there is nothing we can do to recover here, except to log an // error and exit the program. FX_LOGS(ERROR) << "Could not send AddLine request: " << status.status_string(); return -1; } FX_LOGS(INFO) << "AddLine request sent: [Point { x: " << line[1].x << ", y: " << line[1].y << " }, Point { x: " << line[0].x << ", y: " << line[0].y << " }]"; } // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the // referenced bug has been resolved, we can remove the sleep. sleep(2); return 0; }
服务器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <fidl/examples.canvas.baseline/cpp/wire.h> #include <lib/async-loop/cpp/loop.h> #include <lib/async/cpp/task.h> #include <lib/component/outgoing/cpp/outgoing_directory.h> #include <lib/fidl/cpp/wire/channel.h> #include <lib/syslog/cpp/macros.h> #include <unistd.h> #include <src/lib/fxl/macros.h> #include <src/lib/fxl/memory/weak_ptr.h> // A struct that stores the two things we care about for this example: the set of lines, and the // bounding box that contains them. struct CanvasState { // Tracks whether there has been a change since the last send, to prevent redundant updates. bool changed = true; examples_canvas_baseline::wire::BoundingBox bounding_box; }; // An implementation of the |Instance| protocol. class InstanceImpl final : public fidl::WireServer<examples_canvas_baseline::Instance> { public: // Bind this implementation to a channel. InstanceImpl(async_dispatcher_t* dispatcher, fidl::ServerEnd<examples_canvas_baseline::Instance> server_end) : binding_(dispatcher, std::move(server_end), this, std::mem_fn(&InstanceImpl::OnFidlClosed)), weak_factory_(this) { // Start the update timer on startup. Our server sends one update per second ScheduleOnDrawnEvent(dispatcher, zx::sec(1)); } void OnFidlClosed(fidl::UnbindInfo info) { if (info.reason() != ::fidl::Reason::kPeerClosedWhileReading) { FX_LOGS(ERROR) << "Shutdown unexpectedly"; } delete this; } void AddLine(AddLineRequestView request, AddLineCompleter::Sync& completer) override { auto points = request->line; FX_LOGS(INFO) << "AddLine request received: [Point { x: " << points[1].x << ", y: " << points[1].y << " }, Point { x: " << points[0].x << ", y: " << points[0].y << " }]"; // Update the bounding box to account for the new line we've just "added" to the canvas. auto& bounds = state_.bounding_box; for (const auto& point : request->line) { if (point.x < bounds.top_left.x) { bounds.top_left.x = point.x; } if (point.y > bounds.top_left.y) { bounds.top_left.y = point.y; } if (point.x > bounds.bottom_right.x) { bounds.bottom_right.x = point.x; } if (point.y < bounds.bottom_right.y) { bounds.bottom_right.y = point.y; } } // Mark the state as "dirty", so that an update is sent back to the client on the next |OnDrawn| // event. state_.changed = true; } void handle_unknown_method( fidl::UnknownMethodMetadata<examples_canvas_baseline::Instance> metadata, fidl::UnknownMethodCompleter::Sync& completer) override { FX_LOGS(WARNING) << "Received an unknown method with ordinal " << metadata.method_ordinal; } private: // Each scheduled update waits for the allotted amount of time, sends an update if something has // changed, and schedules the next update. void ScheduleOnDrawnEvent(async_dispatcher_t* dispatcher, zx::duration after) { async::PostDelayedTask( dispatcher, [&, dispatcher, after, weak = weak_factory_.GetWeakPtr()] { // Halt execution if the binding has been deallocated already. if (!weak) { return; } // Schedule the next update if the binding still exists. weak->ScheduleOnDrawnEvent(dispatcher, after); // No need to send an update if nothing has changed since the last one. if (!weak->state_.changed) { return; } // This is where we would draw the actual lines. Since this is just an example, we'll // avoid doing the actual rendering, and simply send the bounding box to the client // instead. auto top_left = weak->state_.bounding_box.top_left; auto bottom_right = weak->state_.bounding_box.bottom_right; fidl::Status status = fidl::WireSendEvent(weak->binding_)->OnDrawn(top_left, bottom_right); if (!status.ok()) { return; } FX_LOGS(INFO) << "OnDrawn event sent: top_left: Point { x: " << top_left.x << ", y: " << top_left.y << " }, bottom_right: Point { x: " << bottom_right.x << ", y: " << bottom_right.y << " }"; // Reset the change tracker. weak->state_.changed = false; }, after); } fidl::ServerBinding<examples_canvas_baseline::Instance> binding_; CanvasState state_ = CanvasState{}; // Generates weak references to this object, which are appropriate to pass into asynchronous // callbacks that need to access this object. The references are automatically invalidated // if this object is destroyed. fxl::WeakPtrFactory<InstanceImpl> weak_factory_; }; int main(int argc, char** argv) { FX_LOGS(INFO) << "Started"; // The event loop is used to asynchronously listen for incoming connections and requests from the // client. The following initializes the loop, and obtains the dispatcher, which will be used when // binding the server implementation to a channel. async::Loop loop(&kAsyncLoopConfigNeverAttachToThread); async_dispatcher_t* dispatcher = loop.dispatcher(); // Create an |OutgoingDirectory| instance. // // The |component::OutgoingDirectory| class serves the outgoing directory for our component. This // directory is where the outgoing FIDL protocols are installed so that they can be provided to // other components. component::OutgoingDirectory outgoing = component::OutgoingDirectory(dispatcher); // The `ServeFromStartupInfo()` function sets up the outgoing directory with the startup handle. // The startup handle is a handle provided to every component by the system, so that they can // serve capabilities (e.g. FIDL protocols) to other components. zx::result result = outgoing.ServeFromStartupInfo(); if (result.is_error()) { FX_LOGS(ERROR) << "Failed to serve outgoing directory: " << result.status_string(); return -1; } // Register a handler for components trying to connect to |examples.canvas.baseline.Instance|. result = outgoing.AddUnmanagedProtocol<examples_canvas_baseline::Instance>( [dispatcher](fidl::ServerEnd<examples_canvas_baseline::Instance> server_end) { // Create an instance of our InstanceImpl that destroys itself when the connection closes. new InstanceImpl(dispatcher, std::move(server_end)); }); if (result.is_error()) { FX_LOGS(ERROR) << "Failed to add Instance protocol: " << result.status_string(); return -1; } // Everything is wired up. Sit back and run the loop until an incoming connection wakes us up. FX_LOGS(INFO) << "Listening for incoming connections"; loop.Run(); return 0; }
HLCPP
客户端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <lib/async-loop/cpp/loop.h> #include <lib/sys/cpp/component_context.h> #include <lib/syslog/cpp/macros.h> #include <unistd.h> #include <charconv> #include <examples/canvas/baseline/cpp/fidl.h> #include <examples/fidl/new/canvas/baseline/hlcpp/client/config.h> // A helper function that takes a coordinate in string form, like "123,-456", and parses it into a // a struct of the form |{ in64 x; int64 y; }|. ::examples::canvas::baseline::Point ParsePoint(std::string_view input) { int64_t x = 0; int64_t y = 0; size_t index = input.find(','); if (index != std::string::npos) { std::from_chars(input.data(), input.data() + index, x); std::from_chars(input.data() + index + 1, input.data() + input.length(), y); } return ::examples::canvas::baseline::Point{.x = x, .y = y}; } using Line = ::std::array<::examples::canvas::baseline::Point, 2>; // A helper function that takes a coordinate pair in string form, like "1,2:-3,-4", and parses it // into an array of 2 |Point| structs. Line ParseLine(const std::string& action) { auto input = std::string_view(action); size_t index = input.find(':'); if (index != std::string::npos) { return {ParsePoint(input.substr(0, index)), ParsePoint(input.substr(index + 1))}; } return {}; } int main(int argc, const char** argv) { FX_LOGS(INFO) << "Started"; // Retrieve component configuration. auto conf = config::Config::TakeFromStartupHandle(); // Start up an async loop. async::Loop loop(&kAsyncLoopConfigNeverAttachToThread); async_dispatcher_t* dispatcher = loop.dispatcher(); // Connect to the protocol inside the component's namespace, then create an asynchronous client // using the newly-established connection. examples::canvas::baseline::InstancePtr instance_proxy; auto context = sys::ComponentContext::Create(); context->svc()->Connect(instance_proxy.NewRequest(dispatcher)); FX_LOGS(INFO) << "Outgoing connection enabled"; instance_proxy.set_error_handler([&loop](zx_status_t status) { FX_LOGS(ERROR) << "Shutdown unexpectedly"; loop.Quit(); }); // Provide a lambda to handle incoming |OnDrawn| events asynchronously. instance_proxy.events().OnDrawn = [&loop](::examples::canvas::baseline::Point top_left, ::examples::canvas::baseline::Point bottom_right) { FX_LOGS(INFO) << "OnDrawn event received: top_left: Point { x: " << top_left.x << ", y: " << top_left.y << " }, bottom_right: Point { x: " << bottom_right.x << ", y: " << bottom_right.y << " }"; loop.Quit(); }; instance_proxy.events().handle_unknown_event = [](uint64_t ordinal) { FX_LOGS(WARNING) << "Received an unknown event with ordinal " << ordinal; }; for (const auto& action : conf.script()) { // If the next action in the script is to "WAIT", block until an |OnDrawn| event is received // from the server. if (action == "WAIT") { loop.Run(); loop.ResetQuit(); continue; } // Draw a line to the canvas by calling the server, using the two points we just parsed // above as arguments. Line line = ParseLine(action); instance_proxy->AddLine(line); FX_LOGS(INFO) << "AddLine request sent: [Point { x: " << line[1].x << ", y: " << line[1].y << " }, Point { x: " << line[0].x << ", y: " << line[0].y << " }]"; } // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the // referenced bug has been resolved, we can remove the sleep. sleep(2); return 0; }
服务器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <lib/async-loop/cpp/loop.h> #include <lib/async-loop/default.h> #include <lib/async/cpp/task.h> #include <lib/fidl/cpp/binding.h> #include <lib/sys/cpp/component_context.h> #include <lib/syslog/cpp/macros.h> #include <unistd.h> #include <examples/canvas/baseline/cpp/fidl.h> #include <src/lib/fxl/macros.h> #include <src/lib/fxl/memory/weak_ptr.h> // A struct that stores the two things we care about for this example: the set of lines, and the // bounding box that contains them. struct CanvasState { // Tracks whether there has been a change since the last send, to prevent redundant updates. bool changed = true; examples::canvas::baseline::BoundingBox bounding_box; }; using Line = ::std::array<::examples::canvas::baseline::Point, 2>; // An implementation of the |Instance| protocol. class InstanceImpl final : public examples::canvas::baseline::Instance { public: // Bind this implementation to an |InterfaceRequest|. InstanceImpl(async_dispatcher_t* dispatcher, fidl::InterfaceRequest<examples::canvas::baseline::Instance> request) : binding_(fidl::Binding<examples::canvas::baseline::Instance>(this)), weak_factory_(this) { binding_.Bind(std::move(request), dispatcher); // Gracefully handle abrupt shutdowns. binding_.set_error_handler([this](zx_status_t status) mutable { if (status != ZX_ERR_PEER_CLOSED) { FX_LOGS(ERROR) << "Shutdown unexpectedly"; } delete this; }); // Start the update timer on startup. Our server sends one update per second. ScheduleOnDrawnEvent(dispatcher, zx::sec(1)); } void AddLine(Line line) override { FX_LOGS(INFO) << "AddLine request received: [Point { x: " << line[1].x << ", y: " << line[1].y << " }, Point { x: " << line[0].x << ", y: " << line[0].y << " }]"; // Update the bounding box to account for the new line we've just "added" to the canvas. auto& bounds = state_.bounding_box; for (const auto& point : line) { if (point.x < bounds.top_left.x) { bounds.top_left.x = point.x; } if (point.y > bounds.top_left.y) { bounds.top_left.y = point.y; } if (point.x > bounds.bottom_right.x) { bounds.bottom_right.x = point.x; } if (point.y < bounds.bottom_right.y) { bounds.bottom_right.y = point.y; } } // Mark the state as "dirty", so that an update is sent back to the client on the next |OnDrawn| // event. state_.changed = true; } void handle_unknown_method(uint64_t ordinal, bool method_has_response) override { FX_LOGS(WARNING) << "Received an unknown method with ordinal " << ordinal; } private: // Each scheduled update waits for the allotted amount of time, sends an update if something has // changed, and schedules the next update. void ScheduleOnDrawnEvent(async_dispatcher_t* dispatcher, zx::duration after) { async::PostDelayedTask( dispatcher, [&, dispatcher, after, weak = weak_factory_.GetWeakPtr()] { // Halt execution if the binding has been deallocated already. if (!weak) { return; } // Schedule the next update if the binding still exists. weak->ScheduleOnDrawnEvent(dispatcher, after); // No need to send an update if nothing has changed since the last one. if (!weak->state_.changed) { return; } // This is where we would draw the actual lines. Since this is just an example, we'll // avoid doing the actual rendering, and simply send the bounding box to the client // instead. auto top_left = state_.bounding_box.top_left; auto bottom_right = state_.bounding_box.bottom_right; binding_.events().OnDrawn(top_left, bottom_right); FX_LOGS(INFO) << "OnDrawn event sent: top_left: Point { x: " << top_left.x << ", y: " << top_left.y << " }, bottom_right: Point { x: " << bottom_right.x << ", y: " << bottom_right.y << " }"; // Reset the change tracker. state_.changed = false; }, after); } fidl::Binding<examples::canvas::baseline::Instance> binding_; CanvasState state_ = CanvasState{}; // Generates weak references to this object, which are appropriate to pass into asynchronous // callbacks that need to access this object. The references are automatically invalidated // if this object is destroyed. fxl::WeakPtrFactory<InstanceImpl> weak_factory_; }; int main(int argc, char** argv) { FX_LOGS(INFO) << "Started"; // The event loop is used to asynchronously listen for incoming connections and requests from the // client. The following initializes the loop, and obtains the dispatcher, which will be used when // binding the server implementation to a channel. // // Note that unlike the new C++ bindings, HLCPP bindings rely on the async loop being attached to // the current thread via the |kAsyncLoopConfigAttachToCurrentThread| configuration. async::Loop loop(&kAsyncLoopConfigAttachToCurrentThread); async_dispatcher_t* dispatcher = loop.dispatcher(); // Create an |OutgoingDirectory| instance. // // The |component::OutgoingDirectory| class serves the outgoing directory for our component. // This directory is where the outgoing FIDL protocols are installed so that they can be // provided to other components. auto context = sys::ComponentContext::CreateAndServeOutgoingDirectory(); // Register a handler for components trying to connect to |examples.canvas.baseline.Instance|. context->outgoing()->AddPublicService( fidl::InterfaceRequestHandler<examples::canvas::baseline::Instance>( [dispatcher](fidl::InterfaceRequest<examples::canvas::baseline::Instance> request) { // Create an instance of our |InstanceImpl| that destroys itself when the connection // closes. new InstanceImpl(dispatcher, std::move(request)); })); // Everything is wired up. Sit back and run the loop until an incoming connection wakes us up. FX_LOGS(INFO) << "Listening for incoming connections"; loop.Run(); return 0; }
改进设计
以下每个部分都探讨了一种迭代方法, 原始设计。无需依序构建,每个 为上述基本案例提供了一种独立的方式, 修改或改进。
客户端请求的基本计量
来回发送不按流量计费的单向通话会产生简单的设计, 都存在潜在的隐患:如果服务器的处理速度 该怎么办呢?例如,客户端可能会加载绘图 由某个文本文件中的数千行信息构成, 全部按顺序显示我们该如何对客户施加背压,以防止 服务器是否因这波更新而应接不暇?
使用确认模式并进行单向调用 AddLine(...);
转换为双向AddLine(...) -> ();
,我们就可以向客户提供反馈。
这样,客户端就可以酌情限制其输出。在本课中,
我们只需让客户端先等待确认,然后再发送下一个
虽然更复杂的设计可以发送
乐观地调整,并且仅在降低收到异步 ACK 的频率时才进行节流
超出预期。
首先,我们需要定义接口定义和自动化测试框架。《FIDL》 CML 和领域接口定义设置一个基架, 实现可以使用:
FIDL
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. library examples.canvas.addlinemetered; /// A point in 2D space. type Point = struct { x int64; y int64; }; /// A line in 2D space. alias Line = array<Point, 2>; /// A bounding box in 2D space. This is the result of "drawing" operations on our canvas, and what /// the server reports back to the client. These bounds are sufficient to contain all of the /// lines (inclusive) on a canvas at a given time. type BoundingBox = struct { top_left Point; bottom_right Point; }; /// Manages a single instance of a canvas. Each session of this protocol is responsible for a new /// canvas. @discoverable open protocol Instance { /// Add a line to the canvas. /// /// This method can be considered an improvement over the one-way case from a flow control /// perspective, as it is now much more difficult for a well-behaved client to "get ahead" of /// the server and overwhelm. This is because the client now waits for each request to be acked /// by the server before proceeding. This change represents a trade-off: we get much greater /// synchronization of message flow between the client and the server, at the cost of worse /// performance at the limit due to the extra wait imposed by each ack. flexible AddLine(struct { line Line; }) -> (); /// Update the client with the latest drawing state. The server makes no guarantees about how /// often this event occurs - it could occur multiple times per board state, for example. flexible -> OnDrawn(BoundingBox); };
CML
客户端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { include: [ "syslog/client.shard.cml" ], program: { runner: "elf", binary: "bin/client_bin", }, use: [ { protocol: "examples.canvas.addlinemetered.Instance" }, ], config: { // A script for the client to follow. Entries in the script may take one of two forms: a // pair of signed-integer coordinates like "-2,15:4,5", or the string "WAIT". The former // calls `AddLine(...)`, while the latter pauses execution until the next `->OnDrawn(...)` // event is received. // // TODO(https://fxbug.dev/42178362): It would absolve individual language implementations of a great // deal of string parsing if we were able to use a vector of `union { Point; WaitEnum}` // here. script: { type: "vector", max_count: 100, element: { type: "string", max_size: 64, }, }, }, }
服务器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { include: [ "syslog/client.shard.cml" ], program: { runner: "elf", binary: "bin/server_bin", }, capabilities: [ { protocol: "examples.canvas.addlinemetered.Instance" }, ], expose: [ { protocol: "examples.canvas.addlinemetered.Instance", from: "self", }, ], }
大区
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { children: [ { name: "client", url: "#meta/client.cm", }, { name: "server", url: "#meta/server.cm", }, ], offer: [ // Route the protocol under test from the server to the client. { protocol: "examples.canvas.addlinemetered.Instance", from: "#server", to: "#client", }, // Route diagnostics support to all children. { protocol: [ "fuchsia.inspect.InspectSink", "fuchsia.logger.LogSink", ], from: "parent", to: [ "#client", "#server", ], }, ], }
然后,可以使用任何受支持的语言编写客户端和服务器实现:
Rust
客户端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. use anyhow::{format_err, Context as _, Error}; use config::Config; use fidl_examples_canvas_addlinemetered::{InstanceEvent, InstanceMarker, Point}; use fuchsia_component::client::connect_to_protocol; use futures::TryStreamExt; use std::{thread, time}; #[fuchsia::main] async fn main() -> Result<(), Error> { println!("Started"); // Load the structured config values passed to this component at startup. let config = Config::take_from_startup_handle(); // Use the Component Framework runtime to connect to the newly spun up server component. We wrap // our retained client end in a proxy object that lets us asynchronously send Instance requests // across the channel. let instance = connect_to_protocol::<InstanceMarker>()?; println!("Outgoing connection enabled"); for action in config.script.into_iter() { // If the next action in the script is to "WAIT", block until an OnDrawn event is received // from the server. if action == "WAIT" { let mut event_stream = instance.take_event_stream(); loop { match event_stream .try_next() .await .context("Error getting event response from proxy")? .ok_or_else(|| format_err!("Proxy sent no events"))? { InstanceEvent::OnDrawn { top_left, bottom_right } => { println!( "OnDrawn event received: top_left: {:?}, bottom_right: {:?}", top_left, bottom_right ); break; } InstanceEvent::_UnknownEvent { ordinal, .. } => { println!("Received an unknown event with ordinal {ordinal}"); } } } continue; } // If the action is not a "WAIT", we need to draw a line instead. Parse the string input, // making two points out of it. let mut points = action .split(":") .map(|point| { let integers = point .split(",") .map(|integer| integer.parse::<i64>().unwrap()) .collect::<Vec<i64>>(); Point { x: integers[0], y: integers[1] } }) .collect::<Vec<Point>>(); // Assemble a line from the two points. let from = points.pop().ok_or(format_err!("line requires 2 points, but has 0"))?; let to = points.pop().ok_or(format_err!("line requires 2 points, but has 1"))?; let line = [from, to]; // Draw a line to the canvas by calling the server, using the two points we just parsed // above as arguments. println!("AddLine request sent: {:?}", line); // By awaiting on the reply, we prevent the client from sending another request before the // server is ready to handle, thereby syncing the flow rate between the two parties over // this method. instance.add_line(&line).await.context("Error sending request")?; println!("AddLine response received"); } // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the // referenced bug has been resolved, we can remove the sleep. thread::sleep(time::Duration::from_secs(2)); Ok(()) }
服务器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. use anyhow::{Context as _, Error}; use fidl::endpoints::RequestStream as _; use fidl_examples_canvas_addlinemetered::{ BoundingBox, InstanceRequest, InstanceRequestStream, Point, }; use fuchsia_async::{Time, Timer}; use fuchsia_component::server::ServiceFs; use fuchsia_zircon::{self as zx}; use futures::future::join; use futures::prelude::*; use std::sync::{Arc, Mutex}; // A struct that stores the two things we care about for this example: the bounding box the lines // that have been added thus far, and bit to track whether or not there have been changes since the // last `OnDrawn` event. #[derive(Debug)] struct CanvasState { // Tracks whether there has been a change since the last send, to prevent redundant updates. changed: bool, bounding_box: BoundingBox, } impl CanvasState { /// Handler for the `AddLine` method. fn add_line(&mut self, line: [Point; 2]) { // Update the bounding box to account for the new lines we've just "added" to the canvas. let bounds = &mut self.bounding_box; for point in line { if point.x < bounds.top_left.x { bounds.top_left.x = point.x; } if point.y > bounds.top_left.y { bounds.top_left.y = point.y; } if point.x > bounds.bottom_right.x { bounds.bottom_right.x = point.x; } if point.y < bounds.bottom_right.y { bounds.bottom_right.y = point.y; } } // Mark the state as "dirty", so that an update is sent back to the client on the next tick. self.changed = true } } /// Creates a new instance of the server, paired to a single client across a zircon channel. async fn run_server(stream: InstanceRequestStream) -> Result<(), Error> { // Create a new in-memory state store for the state of the canvas. The store will live for the // lifetime of the connection between the server and this particular client. let state = Arc::new(Mutex::new(CanvasState { changed: true, bounding_box: BoundingBox { top_left: Point { x: 0, y: 0 }, bottom_right: Point { x: 0, y: 0 }, }, })); // Take ownership of the control_handle from the stream, which will allow us to push events from // a different async task. let control_handle = stream.control_handle(); // A separate watcher task periodically "draws" the canvas, and notifies the client of the new // state. We'll need a cloned reference to the canvas state to be accessible from the new // task. let state_ref = state.clone(); let update_sender = || async move { loop { // Our server sends one update per second. Timer::new(Time::after(zx::Duration::from_seconds(1))).await; let mut state = state_ref.lock().unwrap(); if !state.changed { continue; } // After acquiring the lock, this is where we would draw the actual lines. Since this is // just an example, we'll avoid doing the actual rendering, and simply send the bounding // box to the client instead. let bounds = state.bounding_box; match control_handle.send_on_drawn(&bounds.top_left, &bounds.bottom_right) { Ok(_) => println!( "OnDrawn event sent: top_left: {:?}, bottom_right: {:?}", bounds.top_left, bounds.bottom_right ), Err(_) => return, } // Reset the change tracker. state.changed = false } }; // Handle requests on the protocol sequentially - a new request is not handled until its // predecessor has been processed. let state_ref = &state; let request_handler = stream.map(|result| result.context("failed request")).try_for_each(|request| async move { // Match based on the method being invoked. match request { InstanceRequest::AddLine { line, responder } => { println!("AddLine request received: {:?}", line); state_ref.lock().unwrap().add_line(line); // Because this is now a two-way method, we must use the generated `responder` // to send an in this case empty reply back to the client. This is the mechanic // which syncs the flow rate between the client and server on this method, // thereby preventing the client from "flooding" the server with unacknowledged // work. responder.send().context("Error responding")?; println!("AddLine response sent"); } // InstanceRequest::_UnknownMethod { ordinal, .. } => { println!("Received an unknown method with ordinal {ordinal}"); } } Ok(()) }); // This await does not complete, and thus the function does not return, unless the server errors // out. The stream will await indefinitely, thereby creating a long-lived server. Here, we first // wait for the updater task to realize the connection has died, then bubble up the error. join(request_handler, update_sender()).await.0 } // A helper enum that allows us to treat a `Instance` service instance as a value. enum IncomingService { Instance(InstanceRequestStream), } #[fuchsia::main] async fn main() -> Result<(), Error> { println!("Started"); // Add a discoverable instance of our `Instance` protocol - this will allow the client to see // the server and connect to it. let mut fs = ServiceFs::new_local(); fs.dir("svc").add_fidl_service(IncomingService::Instance); fs.take_and_serve_directory_handle()?; println!("Listening for incoming connections"); // The maximum number of concurrent clients that may be served by this process. const MAX_CONCURRENT: usize = 10; // Serve each connection simultaneously, up to the `MAX_CONCURRENT` limit. fs.for_each_concurrent(MAX_CONCURRENT, |IncomingService::Instance(stream)| { run_server(stream).unwrap_or_else(|e| println!("{:?}", e)) }) .await; Ok(()) }
C++(自然)
客户端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <fidl/examples.canvas.addlinemetered/cpp/fidl.h> #include <lib/async-loop/cpp/loop.h> #include <lib/component/incoming/cpp/protocol.h> #include <lib/syslog/cpp/macros.h> #include <unistd.h> #include <charconv> #include <examples/fidl/new/canvas/add_line_metered/cpp_natural/client/config.h> // The |EventHandler| is a derived class that we pass into the |fidl::WireClient| to handle incoming // events asynchronously. class EventHandler : public fidl::AsyncEventHandler<examples_canvas_addlinemetered::Instance> { public: // Handler for |OnDrawn| events sent from the server. void OnDrawn(fidl::Event<examples_canvas_addlinemetered::Instance::OnDrawn>& event) override { auto top_left = event.top_left(); auto bottom_right = event.bottom_right(); FX_LOGS(INFO) << "OnDrawn event received: top_left: Point { x: " << top_left.x() << ", y: " << top_left.y() << " }, bottom_right: Point { x: " << bottom_right.x() << ", y: " << bottom_right.y() << " }"; loop_.Quit(); } void on_fidl_error(fidl::UnbindInfo error) override { FX_LOGS(ERROR) << error; } void handle_unknown_event( fidl::UnknownEventMetadata<examples_canvas_addlinemetered::Instance> metadata) override { FX_LOGS(WARNING) << "Received an unknown event with ordinal " << metadata.event_ordinal; } explicit EventHandler(async::Loop& loop) : loop_(loop) {} private: async::Loop& loop_; }; // A helper function that takes a coordinate in string form, like "123,-456", and parses it into a // a struct of the form |{ in64 x; int64 y; }|. ::examples_canvas_addlinemetered::Point ParsePoint(std::string_view input) { int64_t x = 0; int64_t y = 0; size_t index = input.find(','); if (index != std::string::npos) { std::from_chars(input.data(), input.data() + index, x); std::from_chars(input.data() + index + 1, input.data() + input.length(), y); } return ::examples_canvas_addlinemetered::Point(x, y); } // A helper function that takes a coordinate pair in string form, like "1,2:-3,-4", and parses it // into an array of 2 |Point| structs. ::std::array<::examples_canvas_addlinemetered::Point, 2> ParseLine(const std::string& action) { auto input = std::string_view(action); size_t index = input.find(':'); if (index != std::string::npos) { return {ParsePoint(input.substr(0, index)), ParsePoint(input.substr(index + 1))}; } return {}; } int main(int argc, const char** argv) { FX_LOGS(INFO) << "Started"; // Retrieve component configuration. auto conf = config::Config::TakeFromStartupHandle(); // Start up an async loop and dispatcher. async::Loop loop(&kAsyncLoopConfigNeverAttachToThread); async_dispatcher_t* dispatcher = loop.dispatcher(); // Connect to the protocol inside the component's namespace. This can fail so it's wrapped in a // |zx::result| and it must be checked for errors. zx::result client_end = component::Connect<examples_canvas_addlinemetered::Instance>(); if (!client_end.is_ok()) { FX_LOGS(ERROR) << "Synchronous error when connecting to the |Instance| protocol: " << client_end.status_string(); return -1; } // Create an instance of the event handler. EventHandler event_handler(loop); // Create an asynchronous client using the newly-established connection. fidl::Client client(std::move(*client_end), dispatcher, &event_handler); FX_LOGS(INFO) << "Outgoing connection enabled"; for (const auto& action : conf.script()) { // If the next action in the script is to "WAIT", block until an |OnDrawn| event is received // from the server. if (action == "WAIT") { loop.Run(); loop.ResetQuit(); continue; } // Draw a line to the canvas by calling the server, using the two points we just parsed // above as arguments. auto line = ParseLine(action); FX_LOGS(INFO) << "AddLine request sent: [Point { x: " << line[1].x() << ", y: " << line[1].y() << " }, Point { x: " << line[0].x() << ", y: " << line[0].y() << " }]"; client->AddLine(line).ThenExactlyOnce( [&](fidl::Result<examples_canvas_addlinemetered::Instance::AddLine>& result) { // Check if the FIDL call succeeded or not. if (!result.is_ok()) { // Check that our two-way call succeeded, and handle the error appropriately. In the // case of this example, there is nothing we can do to recover here, except to log an // error and exit the program. FX_LOGS(ERROR) << "Could not send AddLine request: " << result.error_value().FormatDescription(); } FX_LOGS(INFO) << "AddLine response received"; // Quit the loop, thereby handing control back to the outer loop of actions being iterated // over. loop.Quit(); }); // Run the loop until the callback is resolved, at which point we can continue from here. loop.Run(); loop.ResetQuit(); } // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the // referenced bug has been resolved, we can remove the sleep. sleep(2); return 0; }
服务器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <fidl/examples.canvas.addlinemetered/cpp/fidl.h> #include <lib/async-loop/cpp/loop.h> #include <lib/async/cpp/task.h> #include <lib/component/outgoing/cpp/outgoing_directory.h> #include <lib/fidl/cpp/wire/channel.h> #include <lib/syslog/cpp/macros.h> #include <unistd.h> #include <src/lib/fxl/macros.h> #include <src/lib/fxl/memory/weak_ptr.h> // A struct that stores the two things we care about for this example: the set of lines, and the // bounding box that contains them. struct CanvasState { // Tracks whether there has been a change since the last send, to prevent redundant updates. bool changed = true; examples_canvas_addlinemetered::BoundingBox bounding_box; }; // An implementation of the |Instance| protocol. class InstanceImpl final : public fidl::Server<examples_canvas_addlinemetered::Instance> { public: // Bind this implementation to a channel. InstanceImpl(async_dispatcher_t* dispatcher, fidl::ServerEnd<examples_canvas_addlinemetered::Instance> server_end) : binding_(fidl::BindServer( dispatcher, std::move(server_end), this, [this](InstanceImpl* impl, fidl::UnbindInfo info, fidl::ServerEnd<examples_canvas_addlinemetered::Instance> server_end) { if (info.reason() != ::fidl::Reason::kPeerClosedWhileReading) { FX_LOGS(ERROR) << "Shutdown unexpectedly"; } delete this; })), weak_factory_(this) { // Start the update timer on startup. Our server sends one update per second ScheduleOnDrawnEvent(dispatcher, zx::sec(1)); } void AddLine(AddLineRequest& request, AddLineCompleter::Sync& completer) override { auto points = request.line(); FX_LOGS(INFO) << "AddLine request received: [Point { x: " << points[1].x() << ", y: " << points[1].y() << " }, Point { x: " << points[0].x() << ", y: " << points[0].y() << " }]"; // Update the bounding box to account for the new line we've just "added" to the canvas. auto& bounds = state_.bounding_box; for (const auto& point : request.line()) { if (point.x() < bounds.top_left().x()) { bounds.top_left().x() = point.x(); } if (point.y() > bounds.top_left().y()) { bounds.top_left().y() = point.y(); } if (point.x() > bounds.bottom_right().x()) { bounds.bottom_right().x() = point.x(); } if (point.y() < bounds.bottom_right().y()) { bounds.bottom_right().y() = point.y(); } } // Mark the state as "dirty", so that an update is sent back to the client on the next |OnDrawn| // event. state_.changed = true; // Because this is now a two-way method, we must use the generated |completer| to send an in // this case empty reply back to the client. This is the mechanic which syncs the flow rate // between the client and server on this method, thereby preventing the client from "flooding" // the server with unacknowledged work. completer.Reply(); FX_LOGS(INFO) << "AddLine response sent"; } void handle_unknown_method( fidl::UnknownMethodMetadata<examples_canvas_addlinemetered::Instance> metadata, fidl::UnknownMethodCompleter::Sync& completer) override { FX_LOGS(WARNING) << "Received an unknown method with ordinal " << metadata.method_ordinal; } private: // Each scheduled update waits for the allotted amount of time, sends an update if something has // changed, and schedules the next update. void ScheduleOnDrawnEvent(async_dispatcher_t* dispatcher, zx::duration after) { async::PostDelayedTask( dispatcher, [&, dispatcher, after, weak = weak_factory_.GetWeakPtr()] { // Halt execution if the binding has been deallocated already. if (!weak) { return; } // Schedule the next update if the binding still exists. weak->ScheduleOnDrawnEvent(dispatcher, after); // No need to send an update if nothing has changed since the last one. if (!weak->state_.changed) { return; } // This is where we would draw the actual lines. Since this is just an example, we'll // avoid doing the actual rendering, and simply send the bounding box to the client // instead. auto result = fidl::SendEvent(binding_)->OnDrawn(state_.bounding_box); if (!result.is_ok()) { return; } auto top_left = state_.bounding_box.top_left(); auto bottom_right = state_.bounding_box.bottom_right(); FX_LOGS(INFO) << "OnDrawn event sent: top_left: Point { x: " << top_left.x() << ", y: " << top_left.y() << " }, bottom_right: Point { x: " << bottom_right.x() << ", y: " << bottom_right.y() << " }"; // Reset the change tracker. state_.changed = false; }, after); } fidl::ServerBindingRef<examples_canvas_addlinemetered::Instance> binding_; CanvasState state_ = CanvasState{}; // Generates weak references to this object, which are appropriate to pass into asynchronous // callbacks that need to access this object. The references are automatically invalidated // if this object is destroyed. fxl::WeakPtrFactory<InstanceImpl> weak_factory_; }; int main(int argc, char** argv) { FX_LOGS(INFO) << "Started"; // The event loop is used to asynchronously listen for incoming connections and requests from the // client. The following initializes the loop, and obtains the dispatcher, which will be used when // binding the server implementation to a channel. async::Loop loop(&kAsyncLoopConfigNeverAttachToThread); async_dispatcher_t* dispatcher = loop.dispatcher(); // Create an |OutgoingDirectory| instance. // // The |component::OutgoingDirectory| class serves the outgoing directory for our component. This // directory is where the outgoing FIDL protocols are installed so that they can be provided to // other components. component::OutgoingDirectory outgoing = component::OutgoingDirectory(dispatcher); // The `ServeFromStartupInfo()` function sets up the outgoing directory with the startup handle. // The startup handle is a handle provided to every component by the system, so that they can // serve capabilities (e.g. FIDL protocols) to other components. zx::result result = outgoing.ServeFromStartupInfo(); if (result.is_error()) { FX_LOGS(ERROR) << "Failed to serve outgoing directory: " << result.status_string(); return -1; } // Register a handler for components trying to connect to // |examples.canvas.addlinemetered.Instance|. result = outgoing.AddUnmanagedProtocol<examples_canvas_addlinemetered::Instance>( [dispatcher](fidl::ServerEnd<examples_canvas_addlinemetered::Instance> server_end) { // Create an instance of our InstanceImpl that destroys itself when the connection closes. new InstanceImpl(dispatcher, std::move(server_end)); }); if (result.is_error()) { FX_LOGS(ERROR) << "Failed to add Instance protocol: " << result.status_string(); return -1; } // Everything is wired up. Sit back and run the loop until an incoming connection wakes us up. FX_LOGS(INFO) << "Listening for incoming connections"; loop.Run(); return 0; }
C++(有线)
客户端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <fidl/examples.canvas.addlinemetered/cpp/wire.h> #include <lib/async-loop/cpp/loop.h> #include <lib/component/incoming/cpp/protocol.h> #include <lib/syslog/cpp/macros.h> #include <unistd.h> #include <charconv> #include <examples/fidl/new/canvas/add_line_metered/cpp_wire/client/config.h> // The |EventHandler| is a derived class that we pass into the |fidl::WireClient| to handle incoming // events asynchronously. class EventHandler : public fidl::WireAsyncEventHandler<examples_canvas_addlinemetered::Instance> { public: // Handler for |OnDrawn| events sent from the server. void OnDrawn(fidl::WireEvent<examples_canvas_addlinemetered::Instance::OnDrawn>* event) override { auto top_left = event->top_left; auto bottom_right = event->bottom_right; FX_LOGS(INFO) << "OnDrawn event received: top_left: Point { x: " << top_left.x << ", y: " << top_left.y << " }, bottom_right: Point { x: " << bottom_right.x << ", y: " << bottom_right.y << " }"; loop_.Quit(); } void on_fidl_error(fidl::UnbindInfo error) override { FX_LOGS(ERROR) << error; } void handle_unknown_event( fidl::UnknownEventMetadata<examples_canvas_addlinemetered::Instance> metadata) override { FX_LOGS(WARNING) << "Received an unknown event with ordinal " << metadata.event_ordinal; } explicit EventHandler(async::Loop& loop) : loop_(loop) {} private: async::Loop& loop_; }; // A helper function that takes a coordinate in string form, like "123,-456", and parses it into a // a struct of the form |{ in64 x; int64 y; }|. ::examples_canvas_addlinemetered::wire::Point ParsePoint(std::string_view input) { int64_t x = 0; int64_t y = 0; size_t index = input.find(','); if (index != std::string::npos) { std::from_chars(input.data(), input.data() + index, x); std::from_chars(input.data() + index + 1, input.data() + input.length(), y); } return ::examples_canvas_addlinemetered::wire::Point{.x = x, .y = y}; } // A helper function that takes a coordinate pair in string form, like "1,2:-3,-4", and parses it // into an array of 2 |Point| structs. ::fidl::Array<::examples_canvas_addlinemetered::wire::Point, 2> ParseLine( const std::string& action) { auto input = std::string_view(action); size_t index = input.find(':'); if (index != std::string::npos) { return {ParsePoint(input.substr(0, index)), ParsePoint(input.substr(index + 1))}; } return {}; } int main(int argc, const char** argv) { FX_LOGS(INFO) << "Started"; // Retrieve component configuration. auto conf = config::Config::TakeFromStartupHandle(); // Start up an async loop and dispatcher. async::Loop loop(&kAsyncLoopConfigNeverAttachToThread); async_dispatcher_t* dispatcher = loop.dispatcher(); // Connect to the protocol inside the component's namespace. This can fail so it's wrapped in a // |zx::result| and it must be checked for errors. zx::result client_end = component::Connect<examples_canvas_addlinemetered::Instance>(); if (!client_end.is_ok()) { FX_LOGS(ERROR) << "Synchronous error when connecting to the |Instance| protocol: " << client_end.status_string(); return -1; } // Create an instance of the event handler. EventHandler event_handler(loop); // Create an asynchronous client using the newly-established connection. fidl::WireClient client(std::move(*client_end), dispatcher, &event_handler); FX_LOGS(INFO) << "Outgoing connection enabled"; for (const auto& action : conf.script()) { // If the next action in the script is to "WAIT", block until an |OnDrawn| event is received // from the server. if (action == "WAIT") { loop.Run(); loop.ResetQuit(); continue; } // Draw a line to the canvas by calling the server, using the two points we just parsed // above as arguments. auto line = ParseLine(action); FX_LOGS(INFO) << "AddLine request sent: [Point { x: " << line[1].x << ", y: " << line[1].y << " }, Point { x: " << line[0].x << ", y: " << line[0].y << " }]"; client->AddLine(line).ThenExactlyOnce( [&](fidl::WireUnownedResult<examples_canvas_addlinemetered::Instance::AddLine>& result) { // Check if the FIDL call succeeded or not. if (!result.ok()) { // Check that our two-way call succeeded, and handle the error appropriately. In the // case of this example, there is nothing we can do to recover here, except to log an // error and exit the program. FX_LOGS(ERROR) << "Could not send AddLine request: " << result.status_string(); } FX_LOGS(INFO) << "AddLine response received"; // Quit the loop, thereby handing control back to the outer loop of actions being iterated // over. loop.Quit(); }); // Run the loop until the callback is resolved, at which point we can continue from here. loop.Run(); loop.ResetQuit(); } // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the // referenced bug has been resolved, we can remove the sleep. sleep(2); return 0; }
服务器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <fidl/examples.canvas.addlinemetered/cpp/wire.h> #include <lib/async-loop/cpp/loop.h> #include <lib/async/cpp/task.h> #include <lib/component/outgoing/cpp/outgoing_directory.h> #include <lib/fidl/cpp/wire/channel.h> #include <lib/syslog/cpp/macros.h> #include <unistd.h> #include <src/lib/fxl/macros.h> #include <src/lib/fxl/memory/weak_ptr.h> // A struct that stores the two things we care about for this example: the set of lines, and the // bounding box that contains them. struct CanvasState { // Tracks whether there has been a change since the last send, to prevent redundant updates. bool changed = true; examples_canvas_addlinemetered::wire::BoundingBox bounding_box; }; // An implementation of the |Instance| protocol. class InstanceImpl final : public fidl::WireServer<examples_canvas_addlinemetered::Instance> { public: // Bind this implementation to a channel. InstanceImpl(async_dispatcher_t* dispatcher, fidl::ServerEnd<examples_canvas_addlinemetered::Instance> server_end) : binding_(fidl::BindServer( dispatcher, std::move(server_end), this, [this](InstanceImpl* impl, fidl::UnbindInfo info, fidl::ServerEnd<examples_canvas_addlinemetered::Instance> server_end) { if (info.reason() != ::fidl::Reason::kPeerClosedWhileReading) { FX_LOGS(ERROR) << "Shutdown unexpectedly"; } delete this; })), weak_factory_(this) { // Start the update timer on startup. Our server sends one update per second ScheduleOnDrawnEvent(dispatcher, zx::sec(1)); } void AddLine(AddLineRequestView request, AddLineCompleter::Sync& completer) override { auto points = request->line; FX_LOGS(INFO) << "AddLine request received: [Point { x: " << points[1].x << ", y: " << points[1].y << " }, Point { x: " << points[0].x << ", y: " << points[0].y << " }]"; // Update the bounding box to account for the new line we've just "added" to the canvas. auto& bounds = state_.bounding_box; for (const auto& point : request->line) { if (point.x < bounds.top_left.x) { bounds.top_left.x = point.x; } if (point.y > bounds.top_left.y) { bounds.top_left.y = point.y; } if (point.x > bounds.bottom_right.x) { bounds.bottom_right.x = point.x; } if (point.y < bounds.bottom_right.y) { bounds.bottom_right.y = point.y; } } // Mark the state as "dirty", so that an update is sent back to the client on the next |OnDrawn| // event. state_.changed = true; // Because this is now a two-way method, we must use the generated |completer| to send an in // this case empty reply back to the client. This is the mechanic which syncs the flow rate // between the client and server on this method, thereby preventing the client from "flooding" // the server with unacknowledged work. completer.Reply(); FX_LOGS(INFO) << "AddLine response sent"; } void handle_unknown_method( fidl::UnknownMethodMetadata<examples_canvas_addlinemetered::Instance> metadata, fidl::UnknownMethodCompleter::Sync& completer) override { FX_LOGS(WARNING) << "Received an unknown method with ordinal " << metadata.method_ordinal; } private: // Each scheduled update waits for the allotted amount of time, sends an update if something has // changed, and schedules the next update. void ScheduleOnDrawnEvent(async_dispatcher_t* dispatcher, zx::duration after) { async::PostDelayedTask( dispatcher, [&, dispatcher, after, weak = weak_factory_.GetWeakPtr()] { // Halt execution if the binding has been deallocated already. if (!weak) { return; } // Schedule the next update if the binding still exists. weak->ScheduleOnDrawnEvent(dispatcher, after); // No need to send an update if nothing has changed since the last one. if (!weak->state_.changed) { return; } // This is where we would draw the actual lines. Since this is just an example, we'll // avoid doing the actual rendering, and simply send the bounding box to the client // instead. auto top_left = weak->state_.bounding_box.top_left; auto bottom_right = weak->state_.bounding_box.bottom_right; fidl::Status status = fidl::WireSendEvent(weak->binding_)->OnDrawn(top_left, bottom_right); if (!status.ok()) { return; } FX_LOGS(INFO) << "OnDrawn event sent: top_left: Point { x: " << top_left.x << ", y: " << top_left.y << " }, bottom_right: Point { x: " << bottom_right.x << ", y: " << bottom_right.y << " }"; // Reset the change tracker. weak->state_.changed = false; }, after); } fidl::ServerBindingRef<examples_canvas_addlinemetered::Instance> binding_; CanvasState state_ = CanvasState{}; // Generates weak references to this object, which are appropriate to pass into asynchronous // callbacks that need to access this object. The references are automatically invalidated // if this object is destroyed. fxl::WeakPtrFactory<InstanceImpl> weak_factory_; }; int main(int argc, char** argv) { FX_LOGS(INFO) << "Started"; // The event loop is used to asynchronously listen for incoming connections and requests from the // client. The following initializes the loop, and obtains the dispatcher, which will be used when // binding the server implementation to a channel. async::Loop loop(&kAsyncLoopConfigNeverAttachToThread); async_dispatcher_t* dispatcher = loop.dispatcher(); // Create an |OutgoingDirectory| instance. // // The |component::OutgoingDirectory| class serves the outgoing directory for our component. This // directory is where the outgoing FIDL protocols are installed so that they can be provided to // other components. component::OutgoingDirectory outgoing = component::OutgoingDirectory(dispatcher); // The `ServeFromStartupInfo()` function sets up the outgoing directory with the startup handle. // The startup handle is a handle provided to every component by the system, so that they can // serve capabilities (e.g. FIDL protocols) to other components. zx::result result = outgoing.ServeFromStartupInfo(); if (result.is_error()) { FX_LOGS(ERROR) << "Failed to serve outgoing directory: " << result.status_string(); return -1; } // Register a handler for components trying to connect to // |examples.canvas.addlinemetered.Instance|. result = outgoing.AddUnmanagedProtocol<examples_canvas_addlinemetered::Instance>( [dispatcher](fidl::ServerEnd<examples_canvas_addlinemetered::Instance> server_end) { // Create an instance of our InstanceImpl that destroys itself when the connection closes. new InstanceImpl(dispatcher, std::move(server_end)); }); if (result.is_error()) { FX_LOGS(ERROR) << "Failed to add Instance protocol: " << result.status_string(); return -1; } // Everything is wired up. Sit back and run the loop until an incoming connection wakes us up. FX_LOGS(INFO) << "Listening for incoming connections"; loop.Run(); return 0; }
HLCPP
客户端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <lib/async-loop/cpp/loop.h> #include <lib/sys/cpp/component_context.h> #include <lib/syslog/cpp/macros.h> #include <unistd.h> #include <charconv> #include <examples/canvas/addlinemetered/cpp/fidl.h> #include <examples/fidl/new/canvas/add_line_metered/hlcpp/client/config.h> #include "lib/fpromise/result.h" // A helper function that takes a coordinate in string form, like "123,-456", and parses it into a // a struct of the form |{ in64 x; int64 y; }|. ::examples::canvas::addlinemetered::Point ParsePoint(std::string_view input) { int64_t x = 0; int64_t y = 0; size_t index = input.find(','); if (index != std::string::npos) { std::from_chars(input.data(), input.data() + index, x); std::from_chars(input.data() + index + 1, input.data() + input.length(), y); } return ::examples::canvas::addlinemetered::Point{.x = x, .y = y}; } // A helper function that takes a coordinate pair in string form, like "1,2:-3,-4", and parses it // into an array of 2 |Point| structs. ::std::array<::examples::canvas::addlinemetered::Point, 2> ParseLine(const std::string& action) { auto input = std::string_view(action); size_t index = input.find(':'); if (index != std::string::npos) { return {ParsePoint(input.substr(0, index)), ParsePoint(input.substr(index + 1))}; } return {}; } int main(int argc, const char** argv) { FX_LOGS(INFO) << "Started"; // Retrieve component configuration. auto conf = config::Config::TakeFromStartupHandle(); // Start up an async loop. async::Loop loop(&kAsyncLoopConfigNeverAttachToThread); async_dispatcher_t* dispatcher = loop.dispatcher(); // Connect to the protocol inside the component's namespace, then create an asynchronous client // using the newly-established connection. examples::canvas::addlinemetered::InstancePtr instance_proxy; auto context = sys::ComponentContext::Create(); context->svc()->Connect(instance_proxy.NewRequest(dispatcher)); FX_LOGS(INFO) << "Outgoing connection enabled"; instance_proxy.set_error_handler([&loop](zx_status_t status) { FX_LOGS(ERROR) << "Shutdown unexpectedly"; loop.Quit(); }); // Provide a lambda to handle incoming |OnDrawn| events asynchronously. instance_proxy.events().OnDrawn = [&loop]( ::examples::canvas::addlinemetered::Point top_left, ::examples::canvas::addlinemetered::Point bottom_right) { FX_LOGS(INFO) << "OnDrawn event received: top_left: Point { x: " << top_left.x << ", y: " << top_left.y << " }, bottom_right: Point { x: " << bottom_right.x << ", y: " << bottom_right.y << " }"; loop.Quit(); }; instance_proxy.events().handle_unknown_event = [](uint64_t ordinal) { FX_LOGS(WARNING) << "Received an unknown event with ordinal " << ordinal; }; for (const auto& action : conf.script()) { // If the next action in the script is to "WAIT", block until an |OnDrawn| event is received // from the server. if (action == "WAIT") { loop.Run(); loop.ResetQuit(); continue; } // Draw a line to the canvas by calling the server, using the two points we just parsed // above as arguments. auto line = ParseLine(action); FX_LOGS(INFO) << "AddLine request sent: [Point { x: " << line[1].x << ", y: " << line[1].y << " }, Point { x: " << line[0].x << ", y: " << line[0].y << " }]"; instance_proxy->AddLine(line, [&](fpromise::result<void, fidl::FrameworkErr> result) { if (result.is_error()) { // Check that our flexible two-way call was known to the server and handle the case of an // unknown method appropriately. In the case of this example, there is nothing we can do to // recover here, except to log an error and exit the program. FX_LOGS(ERROR) << "Server does not implement AddLine"; } FX_LOGS(INFO) << "AddLine response received"; // Quit the loop, thereby handing control back to the outer loop of actions being iterated // over. loop.Quit(); }); // Run the loop until the callback is resolved, at which point we can continue from here. loop.Run(); loop.ResetQuit(); } // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the // referenced bug has been resolved, we can remove the sleep. sleep(2); return 0; }
服务器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <lib/async-loop/cpp/loop.h> #include <lib/async-loop/default.h> #include <lib/async/cpp/task.h> #include <lib/fidl/cpp/binding.h> #include <lib/sys/cpp/component_context.h> #include <lib/syslog/cpp/macros.h> #include <unistd.h> #include <examples/canvas/addlinemetered/cpp/fidl.h> #include <src/lib/fxl/macros.h> #include <src/lib/fxl/memory/weak_ptr.h> // A struct that stores the two things we care about for this example: the set of lines, and the // bounding box that contains them. struct CanvasState { // Tracks whether there has been a change since the last send, to prevent redundant updates. bool changed = true; examples::canvas::addlinemetered::BoundingBox bounding_box; }; // An implementation of the |Instance| protocol. class InstanceImpl final : public examples::canvas::addlinemetered::Instance { public: // Bind this implementation to an |InterfaceRequest|. InstanceImpl(async_dispatcher_t* dispatcher, fidl::InterfaceRequest<examples::canvas::addlinemetered::Instance> request) : binding_(fidl::Binding<examples::canvas::addlinemetered::Instance>(this)), weak_factory_(this) { binding_.Bind(std::move(request), dispatcher); // Gracefully handle abrupt shutdowns. binding_.set_error_handler([this](zx_status_t status) mutable { if (status != ZX_ERR_PEER_CLOSED) { FX_LOGS(ERROR) << "Shutdown unexpectedly"; } delete this; }); // Start the update timer on startup. Our server sends one update per second. ScheduleOnDrawnEvent(dispatcher, zx::sec(1)); } void AddLine(::std::array<::examples::canvas::addlinemetered::Point, 2> line, AddLineCallback callback) override { FX_LOGS(INFO) << "AddLine request received: [Point { x: " << line[1].x << ", y: " << line[1].y << " }, Point { x: " << line[0].x << ", y: " << line[0].y << " }]"; // Update the bounding box to account for the new line we've just "added" to the canvas. auto& bounds = state_.bounding_box; for (const auto& point : line) { if (point.x < bounds.top_left.x) { bounds.top_left.x = point.x; } if (point.y > bounds.top_left.y) { bounds.top_left.y = point.y; } if (point.x > bounds.bottom_right.x) { bounds.bottom_right.x = point.x; } if (point.y < bounds.bottom_right.y) { bounds.bottom_right.y = point.y; } } // Mark the state as "dirty", so that an update is sent back to the client on the next |OnDrawn| // event. state_.changed = true; // Because this is now a two-way method, we must use the generated |callback| to send an in // this case empty reply back to the client. This is the mechanic which syncs the flow rate // between the client and server on this method, thereby preventing the client from "flooding" // the server with unacknowledged work. callback(fpromise::ok()); FX_LOGS(INFO) << "AddLine response sent"; } void handle_unknown_method(uint64_t ordinal, bool method_has_response) override { FX_LOGS(WARNING) << "Received an unknown method with ordinal " << ordinal; } private: // Each scheduled update waits for the allotted amount of time, sends an update if something has // changed, and schedules the next update. void ScheduleOnDrawnEvent(async_dispatcher_t* dispatcher, zx::duration after) { async::PostDelayedTask( dispatcher, [&, dispatcher, after, weak = weak_factory_.GetWeakPtr()] { // Halt execution if the binding has been deallocated already. if (!weak) { return; } // Schedule the next update if the binding still exists. weak->ScheduleOnDrawnEvent(dispatcher, after); // No need to send an update if nothing has changed since the last one. if (!weak->state_.changed) { return; } // This is where we would draw the actual lines. Since this is just an example, we'll // avoid doing the actual rendering, and simply send the bounding box to the client // instead. auto top_left = state_.bounding_box.top_left; auto bottom_right = state_.bounding_box.bottom_right; binding_.events().OnDrawn(top_left, bottom_right); FX_LOGS(INFO) << "OnDrawn event sent: top_left: Point { x: " << top_left.x << ", y: " << top_left.y << " }, bottom_right: Point { x: " << bottom_right.x << ", y: " << bottom_right.y << " }"; // Reset the change tracker. state_.changed = false; }, after); } fidl::Binding<examples::canvas::addlinemetered::Instance> binding_; CanvasState state_ = CanvasState{}; // Generates weak references to this object, which are appropriate to pass into asynchronous // callbacks that need to access this object. The references are automatically invalidated // if this object is destroyed. fxl::WeakPtrFactory<InstanceImpl> weak_factory_; }; int main(int argc, char** argv) { FX_LOGS(INFO) << "Started"; // The event loop is used to asynchronously listen for incoming connections and requests from the // client. The following initializes the loop, and obtains the dispatcher, which will be used when // binding the server implementation to a channel. // // Note that unlike the new C++ bindings, HLCPP bindings rely on the async loop being attached to // the current thread via the |kAsyncLoopConfigAttachToCurrentThread| configuration. async::Loop loop(&kAsyncLoopConfigAttachToCurrentThread); async_dispatcher_t* dispatcher = loop.dispatcher(); // Create an |OutgoingDirectory| instance. // // The |component::OutgoingDirectory| class serves the outgoing directory for our component. // This directory is where the outgoing FIDL protocols are installed so that they can be // provided to other components. auto context = sys::ComponentContext::CreateAndServeOutgoingDirectory(); // Register a handler for components trying to connect to // |examples.canvas.addlinemetered.Instance|. context->outgoing()->AddPublicService( fidl::InterfaceRequestHandler<examples::canvas::addlinemetered::Instance>( [dispatcher](fidl::InterfaceRequest<examples::canvas::addlinemetered::Instance> request) { // Create an instance of our |InstanceImpl| that destroys itself when the connection // closes. new InstanceImpl(dispatcher, std::move(request)); })); // Everything is wired up. Sit back and run the loop until an incoming connection wakes us up. FX_LOGS(INFO) << "Listening for incoming connections"; loop.Run(); return 0; }
客户端明确请求绘制操作
提高 Instance
协议性能的一种方法是允许
批量行,而不是每次发送一个 AddLine(...);
我们需要将新行添加到画布,等待回复,然后
再对下一行执行同样的操作,我们可以将多行批量处理为一个
调用新的 AddLines(...);
调用。客户现在可以决定如何
最好将一大群要绘制的线段分割出来。
如果单纯地实现,我们会发现自己处于服务器和
客户端完全不同步:客户端可能会使用大量的
无界限的 AddLines(...);
调用,服务器同样会用大量数据传送客户端
-> OnDrawn(...);
事件数超出其处理能力这两种问题的解决方法
这些问题是添加一个简单的 Ready() -> ();
方法来进行同步
目的。每当客户端准备好接收数据时,都会调用此方法。
下一次绘制更新,服务器响应表明客户端
可以继续处理更多请求
现在,我们在两个方向上都提供了一些流控制。现在,该协议
前馈模式,从而允许在某些
同步“提交”调用会在服务器上触发实际工作。这个
防止客户端超负荷运行服务器。同样,
服务器不再允许发送无界限 -> OnDrawn(...);
事件:
事件必须跟在来自客户端的信号(即 Ready() -> ();
调用)之后,
表明它已经可以做更多工作了。这称为受限的
事件模式。
具体实现必须手动应用其中一些规则:客户端
如果收到其未收到的 -> OnDrawn(...);
事件,则必须关闭连接
通过 Ready() -> ();
方法发出请求。
FIDL、CML 和 Realm 接口的定义如下所示:
FIDL
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. library examples.canvas.clientrequesteddraw; /// A point in 2D space. type Point = struct { x int64; y int64; }; /// A line in 2D space. alias Line = array<Point, 2>; /// A bounding box in 2D space. This is the result of "drawing" operations on our canvas, and what /// the server reports back to the client. These bounds are sufficient to contain all of the /// lines (inclusive) on a canvas at a given time. type BoundingBox = struct { top_left Point; bottom_right Point; }; /// Manages a single instance of a canvas. Each session of this protocol is responsible for a new /// canvas. @discoverable open protocol Instance { /// Add multiple lines to the canvas. We are able to reduce protocol chatter and the number of /// requests needed by batching instead of calling the simpler `AddLine(...)` one line at a /// time. flexible AddLines(struct { lines vector<Line>; }); /// Rather than the server randomly performing draws, or trying to guess when to do so, the /// client must explicitly ask for them. This creates a bit of extra chatter with the additional /// method invocation, but allows much greater client-side control of when the canvas is "ready" /// for a view update, thereby eliminating unnecessary draws. /// /// This method also has the benefit of "throttling" the `-> OnDrawn(...)` event - rather than /// allowing a potentially unlimited flood of `-> OnDrawn(...)` calls, we now have the runtime /// enforced semantic that each `-> OnDrawn(...)` call must follow a unique `Ready() -> ()` call /// from the client. An unprompted `-> OnDrawn(...)` is invalid, and should cause the channel to /// immediately close. flexible Ready() -> (); /// Update the client with the latest drawing state. The server makes no guarantees about how /// often this event occurs - it could occur multiple times per board state, for example. flexible -> OnDrawn(BoundingBox); };
CML
客户端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { include: [ "syslog/client.shard.cml" ], program: { runner: "elf", binary: "bin/client_bin", }, use: [ { protocol: "examples.canvas.clientrequesteddraw.Instance" }, ], config: { // A script for the client to follow. Entries in the script may take one of two forms: a // pair of signed-integer coordinates like "-2,15:4,5", or the string "READY". The former // builds a local vector sent via a single `AddLines(...)` call, while the latter sends a // `Ready() -> ()` call pauses execution until the next `->OnDrawn(...)` event is received. // // TODO(https://fxbug.dev/42178362): It would absolve individual language implementations of a great // deal of string parsing if we were able to use a vector of `union { Point; Ready}` here. script: { type: "vector", max_count: 100, element: { type: "string", max_size: 64, }, }, }, }
服务器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { include: [ "syslog/client.shard.cml" ], program: { runner: "elf", binary: "bin/server_bin", }, capabilities: [ { protocol: "examples.canvas.clientrequesteddraw.Instance" }, ], expose: [ { protocol: "examples.canvas.clientrequesteddraw.Instance", from: "self", }, ], }
大区
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. { children: [ { name: "client", url: "#meta/client.cm", }, { name: "server", url: "#meta/server.cm", }, ], offer: [ // Route the protocol under test from the server to the client. { protocol: "examples.canvas.clientrequesteddraw.Instance", from: "#server", to: "#client", }, // Route diagnostics support to all children. { protocol: [ "fuchsia.inspect.InspectSink", "fuchsia.logger.LogSink", ], from: "parent", to: [ "#client", "#server", ], }, ], }
然后,可以使用任何受支持的语言编写客户端和服务器实现:
Rust
客户端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. use anyhow::{format_err, Context as _, Error}; use config::Config; use fidl_examples_canvas_clientrequesteddraw::{InstanceEvent, InstanceMarker, Point}; use fuchsia_component::client::connect_to_protocol; use futures::TryStreamExt; use std::{thread, time}; #[fuchsia::main] async fn main() -> Result<(), Error> { println!("Started"); // Load the structured config values passed to this component at startup. let config = Config::take_from_startup_handle(); // Use the Component Framework runtime to connect to the newly spun up server component. We wrap // our retained client end in a proxy object that lets us asynchronously send Instance requests // across the channel. let instance = connect_to_protocol::<InstanceMarker>()?; println!("Outgoing connection enabled"); let mut batched_lines = Vec::<[Point; 2]>::new(); for action in config.script.into_iter() { // If the next action in the script is to "PUSH", send a batch of lines to the server. if action == "PUSH" { instance.add_lines(&batched_lines).context("Could not send lines")?; println!("AddLines request sent"); batched_lines.clear(); continue; } // If the next action in the script is to "WAIT", block until an OnDrawn event is received // from the server. if action == "WAIT" { let mut event_stream = instance.take_event_stream(); loop { match event_stream .try_next() .await .context("Error getting event response from proxy")? .ok_or_else(|| format_err!("Proxy sent no events"))? { InstanceEvent::OnDrawn { top_left, bottom_right } => { println!( "OnDrawn event received: top_left: {:?}, bottom_right: {:?}", top_left, bottom_right ); break; } InstanceEvent::_UnknownEvent { ordinal, .. } => { println!("Received an unknown event with ordinal {ordinal}"); } } } // Now, inform the server that we are ready to receive more updates whenever they are // ready for us. println!("Ready request sent"); instance.ready().await.context("Could not send ready call")?; println!("Ready success"); continue; } // Add a line to the next batch. Parse the string input, making two points out of it. let mut points = action .split(":") .map(|point| { let integers = point .split(",") .map(|integer| integer.parse::<i64>().unwrap()) .collect::<Vec<i64>>(); Point { x: integers[0], y: integers[1] } }) .collect::<Vec<Point>>(); // Assemble a line from the two points. let from = points.pop().ok_or(format_err!("line requires 2 points, but has 0"))?; let to = points.pop().ok_or(format_err!("line requires 2 points, but has 1"))?; let mut line: [Point; 2] = [from, to]; // Batch a line for drawing to the canvas using the two points provided. println!("AddLines batching line: {:?}", &mut line); batched_lines.push(line); } // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the // referenced bug has been resolved, we can remove the sleep. thread::sleep(time::Duration::from_secs(2)); Ok(()) }
服务器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. use anyhow::{anyhow, Context as _, Error}; use fidl::endpoints::RequestStream as _; use fidl_examples_canvas_clientrequesteddraw::{ BoundingBox, InstanceRequest, InstanceRequestStream, Point, }; use fuchsia_async::{Time, Timer}; use fuchsia_component::server::ServiceFs; use fuchsia_zircon::{self as zx}; use futures::future::join; use futures::prelude::*; use std::sync::{Arc, Mutex}; // A struct that stores the two things we care about for this example: the bounding box the lines // that have been added thus far, and bit to track whether or not there have been changes since the // last `OnDrawn` event. #[derive(Debug)] struct CanvasState { // Tracks whether there has been a change since the last send, to prevent redundant updates. changed: bool, // Tracks whether or not the client has declared itself ready to receive more updated. ready: bool, bounding_box: BoundingBox, } /// Handler for the `AddLines` method. fn add_lines(state: &mut CanvasState, lines: Vec<[Point; 2]>) { // Update the bounding box to account for the new lines we've just "added" to the canvas. let bounds = &mut state.bounding_box; for line in lines { println!("AddLines printing line: {:?}", line); for point in line { if point.x < bounds.top_left.x { bounds.top_left.x = point.x; } if point.y > bounds.top_left.y { bounds.top_left.y = point.y; } if point.x > bounds.bottom_right.x { bounds.bottom_right.x = point.x; } if point.y < bounds.bottom_right.y { bounds.bottom_right.y = point.y; } } } // Mark the state as "dirty", so that an update is sent back to the client on the next tick. state.changed = true } /// Creates a new instance of the server, paired to a single client across a zircon channel. async fn run_server(stream: InstanceRequestStream) -> Result<(), Error> { // Create a new in-memory state store for the state of the canvas. The store will live for the // lifetime of the connection between the server and this particular client. let state = Arc::new(Mutex::new(CanvasState { changed: true, ready: true, bounding_box: BoundingBox { top_left: Point { x: 0, y: 0 }, bottom_right: Point { x: 0, y: 0 }, }, })); // Take ownership of the control_handle from the stream, which will allow us to push events from // a different async task. let control_handle = stream.control_handle(); // A separate watcher task periodically "draws" the canvas, and notifies the client of the new // state. We'll need a cloned reference to the canvas state to be accessible from the new // task. let state_ref = state.clone(); let update_sender = || async move { loop { // Our server sends one update per second, but only if the client has declared that it // is ready to receive one. Timer::new(Time::after(zx::Duration::from_seconds(1))).await; let mut state = state_ref.lock().unwrap(); if !state.changed || !state.ready { continue; } // After acquiring the lock, this is where we would draw the actual lines. Since this is // just an example, we'll avoid doing the actual rendering, and simply send the bounding // box to the client instead. let bounds = state.bounding_box; match control_handle.send_on_drawn(&bounds.top_left, &bounds.bottom_right) { Ok(_) => println!( "OnDrawn event sent: top_left: {:?}, bottom_right: {:?}", bounds.top_left, bounds.bottom_right ), Err(_) => return, } // Reset the change and ready trackers. state.ready = false; state.changed = false; } }; // Handle requests on the protocol sequentially - a new request is not handled until its // predecessor has been processed. let state_ref = &state; let request_handler = stream.map(|result| result.context("failed request")).try_for_each(|request| async move { // Match based on the method being invoked. match request { InstanceRequest::AddLines { lines, .. } => { println!("AddLines request received"); add_lines(&mut state_ref.lock().unwrap(), lines); } InstanceRequest::Ready { responder, .. } => { println!("Ready request received"); // The client must only call `Ready() -> ();` after receiving an `-> OnDrawn();` // event; if two "consecutive" `Ready() -> ();` calls are received, this // interaction has entered an invalid state, and should be aborted immediately. let mut state = state_ref.lock().unwrap(); if state.ready == true { return Err(anyhow!("Invalid back-to-back `Ready` requests received")); } state.ready = true; responder.send().context("Error responding")?; } // InstanceRequest::_UnknownMethod { ordinal, .. } => { println!("Received an unknown method with ordinal {ordinal}"); } } Ok(()) }); // This line will only be reached if the server errors out. The stream will await indefinitely, // thereby creating a long-lived server. Here, we first wait for the updater task to realize the // connection has died, then bubble up the error. join(request_handler, update_sender()).await.0 } // A helper enum that allows us to treat a `Instance` service instance as a value. enum IncomingService { Instance(InstanceRequestStream), } #[fuchsia::main] async fn main() -> Result<(), Error> { println!("Started"); // Add a discoverable instance of our `Instance` protocol - this will allow the client to see // the server and connect to it. let mut fs = ServiceFs::new_local(); fs.dir("svc").add_fidl_service(IncomingService::Instance); fs.take_and_serve_directory_handle()?; println!("Listening for incoming connections"); // The maximum number of concurrent clients that may be served by this process. const MAX_CONCURRENT: usize = 10; // Serve each connection simultaneously, up to the `MAX_CONCURRENT` limit. fs.for_each_concurrent(MAX_CONCURRENT, |IncomingService::Instance(stream)| { run_server(stream).unwrap_or_else(|e| println!("{:?}", e)) }) .await; Ok(()) }
C++(自然)
客户端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <fidl/examples.canvas.clientrequesteddraw/cpp/fidl.h> #include <lib/async-loop/cpp/loop.h> #include <lib/component/incoming/cpp/protocol.h> #include <lib/syslog/cpp/macros.h> #include <unistd.h> #include <charconv> #include <examples/fidl/new/canvas/client_requested_draw/cpp_natural/client/config.h> // The |EventHandler| is a derived class that we pass into the |fidl::WireClient| to handle incoming // events asynchronously. class EventHandler : public fidl::AsyncEventHandler<examples_canvas_clientrequesteddraw::Instance> { public: // Handler for |OnDrawn| events sent from the server. void OnDrawn( fidl::Event<examples_canvas_clientrequesteddraw::Instance::OnDrawn>& event) override { ::examples_canvas_clientrequesteddraw::Point top_left = event.top_left(); ::examples_canvas_clientrequesteddraw::Point bottom_right = event.bottom_right(); FX_LOGS(INFO) << "OnDrawn event received: top_left: Point { x: " << top_left.x() << ", y: " << top_left.y() << " }, bottom_right: Point { x: " << bottom_right.x() << ", y: " << bottom_right.y() << " }"; loop_.Quit(); } void on_fidl_error(fidl::UnbindInfo error) override { FX_LOGS(ERROR) << error; } void handle_unknown_event( fidl::UnknownEventMetadata<examples_canvas_clientrequesteddraw::Instance> metadata) override { FX_LOGS(WARNING) << "Received an unknown event with ordinal " << metadata.event_ordinal; } explicit EventHandler(async::Loop& loop) : loop_(loop) {} private: async::Loop& loop_; }; // A helper function that takes a coordinate in string form, like "123,-456", and parses it into a // a struct of the form |{ in64 x; int64 y; }|. ::examples_canvas_clientrequesteddraw::Point ParsePoint(std::string_view input) { int64_t x = 0; int64_t y = 0; size_t index = input.find(','); if (index != std::string::npos) { std::from_chars(input.data(), input.data() + index, x); std::from_chars(input.data() + index + 1, input.data() + input.length(), y); } return ::examples_canvas_clientrequesteddraw::Point(x, y); } using Line = ::std::array<::examples_canvas_clientrequesteddraw::Point, 2>; // A helper function that takes a coordinate pair in string form, like "1,2:-3,-4", and parses it // into an array of 2 |Point| structs. Line ParseLine(const std::string& action) { auto input = std::string_view(action); size_t index = input.find(':'); if (index != std::string::npos) { return {ParsePoint(input.substr(0, index)), ParsePoint(input.substr(index + 1))}; } return {}; } int main(int argc, const char** argv) { FX_LOGS(INFO) << "Started"; // Retrieve component configuration. auto conf = config::Config::TakeFromStartupHandle(); // Start up an async loop and dispatcher. async::Loop loop(&kAsyncLoopConfigNeverAttachToThread); async_dispatcher_t* dispatcher = loop.dispatcher(); // Connect to the protocol inside the component's namespace. This can fail so it's wrapped in a // |zx::result| and it must be checked for errors. zx::result client_end = component::Connect<examples_canvas_clientrequesteddraw::Instance>(); if (!client_end.is_ok()) { FX_LOGS(ERROR) << "Synchronous error when connecting to the |Instance| protocol: " << client_end.status_string(); return -1; } // Create an instance of the event handler. EventHandler event_handler(loop); // Create an asynchronous client using the newly-established connection. fidl::Client client(std::move(*client_end), dispatcher, &event_handler); FX_LOGS(INFO) << "Outgoing connection enabled"; std::vector<Line> batched_lines; for (const auto& action : conf.script()) { // If the next action in the script is to "PUSH", send a batch of lines to the server. if (action == "PUSH") { fit::result<fidl::Error> result = client->AddLines(batched_lines); if (!result.is_ok()) { // Check that our one-way call was enqueued successfully, and handle the error // appropriately. In the case of this example, there is nothing we can do to recover here, // except to log an error and exit the program. FX_LOGS(ERROR) << "Could not send AddLines request: " << result.error_value(); return -1; } batched_lines.clear(); FX_LOGS(INFO) << "AddLines request sent"; continue; } // If the next action in the script is to "WAIT", block until an |OnDrawn| event is received // from the server. if (action == "WAIT") { loop.Run(); loop.ResetQuit(); // Now, inform the server that we are ready to receive more updates whenever they are // ready for us. FX_LOGS(INFO) << "Ready request sent"; client->Ready().ThenExactlyOnce( [&](fidl::Result<examples_canvas_clientrequesteddraw::Instance::Ready> result) { // Check if the FIDL call succeeded or not. if (result.is_ok()) { FX_LOGS(INFO) << "Ready success"; } else { FX_LOGS(ERROR) << "Could not send Ready request: " << result.error_value(); } // Quit the loop, thereby handing control back to the outer loop of actions being // iterated over. loop.Quit(); }); // Run the loop until the callback is resolved, at which point we can continue from here. loop.Run(); loop.ResetQuit(); continue; } // Batch a line for drawing to the canvas using the two points provided. Line line = ParseLine(action); batched_lines.push_back(line); FX_LOGS(INFO) << "AddLines batching line: [Point { x: " << line[1].x() << ", y: " << line[1].y() << " }, Point { x: " << line[0].x() << ", y: " << line[0].y() << " }]"; } // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the // referenced bug has been resolved, we can remove the sleep. sleep(2); return 0; }
服务器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <fidl/examples.canvas.clientrequesteddraw/cpp/fidl.h> #include <lib/async-loop/cpp/loop.h> #include <lib/async/cpp/task.h> #include <lib/component/outgoing/cpp/outgoing_directory.h> #include <lib/fidl/cpp/wire/channel.h> #include <lib/syslog/cpp/macros.h> #include <unistd.h> #include <src/lib/fxl/macros.h> #include <src/lib/fxl/memory/weak_ptr.h> // A struct that stores the two things we care about for this example: the set of lines, and the // bounding box that contains them. struct CanvasState { // Tracks whether there has been a change since the last send, to prevent redundant updates. bool changed = true; // Tracks whether or not the client has declared itself ready to receive more updated. bool ready = true; examples_canvas_clientrequesteddraw::BoundingBox bounding_box; }; // An implementation of the |Instance| protocol. class InstanceImpl final : public fidl::Server<examples_canvas_clientrequesteddraw::Instance> { public: // Bind this implementation to a channel. InstanceImpl(async_dispatcher_t* dispatcher, fidl::ServerEnd<examples_canvas_clientrequesteddraw::Instance> server_end) : binding_(dispatcher, std::move(server_end), this, std::mem_fn(&InstanceImpl::OnFidlClosed)), weak_factory_(this) { // Start the update timer on startup. Our server sends one update per second ScheduleOnDrawnEvent(dispatcher, zx::sec(1)); } void OnFidlClosed(fidl::UnbindInfo info) { if (info.reason() != ::fidl::Reason::kPeerClosedWhileReading) { FX_LOGS(ERROR) << "Shutdown unexpectedly"; } delete this; } void AddLines(AddLinesRequest& request, AddLinesCompleter::Sync& completer) override { FX_LOGS(INFO) << "AddLines request received"; for (const auto& points : request.lines()) { FX_LOGS(INFO) << "AddLines printing line: [Point { x: " << points[1].x() << ", y: " << points[1].y() << " }, Point { x: " << points[0].x() << ", y: " << points[0].y() << " }]"; // Update the bounding box to account for the new line we've just "added" to the canvas. auto& bounds = state_.bounding_box; for (const auto& point : points) { if (point.x() < bounds.top_left().x()) { bounds.top_left().x() = point.x(); } if (point.y() > bounds.top_left().y()) { bounds.top_left().y() = point.y(); } if (point.x() > bounds.bottom_right().x()) { bounds.bottom_right().x() = point.x(); } if (point.y() < bounds.bottom_right().y()) { bounds.bottom_right().y() = point.y(); } } } // Mark the state as "dirty", so that an update is sent back to the client on the next |OnDrawn| // event. state_.changed = true; } void Ready(ReadyCompleter::Sync& completer) override { FX_LOGS(INFO) << "Ready request received"; // The client must only call `Ready() -> ();` after receiving an `-> OnDrawn();` event; if two // "consecutive" `Ready() -> ();` calls are received, this interaction has entered an invalid // state, and should be aborted immediately. if (state_.ready == true) { FX_LOGS(ERROR) << "Invalid back-to-back `Ready` requests received"; } state_.ready = true; completer.Reply(); } void handle_unknown_method( fidl::UnknownMethodMetadata<examples_canvas_clientrequesteddraw::Instance> metadata, fidl::UnknownMethodCompleter::Sync& completer) override { FX_LOGS(WARNING) << "Received an unknown method with ordinal " << metadata.method_ordinal; } private: // Each scheduled update waits for the allotted amount of time, sends an update if something has // changed, and schedules the next update. void ScheduleOnDrawnEvent(async_dispatcher_t* dispatcher, zx::duration after) { async::PostDelayedTask( dispatcher, [&, dispatcher, after, weak = weak_factory_.GetWeakPtr()] { // Halt execution if the binding has been deallocated already. if (!weak) { return; } // Schedule the next update if the binding still exists. weak->ScheduleOnDrawnEvent(dispatcher, after); // No need to send an update if nothing has changed since the last one, or the client has // not yet informed us that it is ready for more updates. if (!weak->state_.changed || !weak->state_.ready) { return; } // This is where we would draw the actual lines. Since this is just an example, we'll // avoid doing the actual rendering, and simply send the bounding box to the client // instead. auto result = fidl::SendEvent(binding_)->OnDrawn(state_.bounding_box); if (!result.is_ok()) { return; } auto top_left = state_.bounding_box.top_left(); auto bottom_right = state_.bounding_box.bottom_right(); FX_LOGS(INFO) << "OnDrawn event sent: top_left: Point { x: " << top_left.x() << ", y: " << top_left.y() << " }, bottom_right: Point { x: " << bottom_right.x() << ", y: " << bottom_right.y() << " }"; // Reset the change and ready trackers. state_.ready = false; state_.changed = false; }, after); } fidl::ServerBinding<examples_canvas_clientrequesteddraw::Instance> binding_; CanvasState state_ = CanvasState{}; // Generates weak references to this object, which are appropriate to pass into asynchronous // callbacks that need to access this object. The references are automatically invalidated // if this object is destroyed. fxl::WeakPtrFactory<InstanceImpl> weak_factory_; }; int main(int argc, char** argv) { FX_LOGS(INFO) << "Started"; // The event loop is used to asynchronously listen for incoming connections and requests from the // client. The following initializes the loop, and obtains the dispatcher, which will be used when // binding the server implementation to a channel. async::Loop loop(&kAsyncLoopConfigNeverAttachToThread); async_dispatcher_t* dispatcher = loop.dispatcher(); // Create an |OutgoingDirectory| instance. // // The |component::OutgoingDirectory| class serves the outgoing directory for our component. This // directory is where the outgoing FIDL protocols are installed so that they can be provided to // other components. component::OutgoingDirectory outgoing = component::OutgoingDirectory(dispatcher); // The `ServeFromStartupInfo()` function sets up the outgoing directory with the startup handle. // The startup handle is a handle provided to every component by the system, so that they can // serve capabilities (e.g. FIDL protocols) to other components. zx::result result = outgoing.ServeFromStartupInfo(); if (result.is_error()) { FX_LOGS(ERROR) << "Failed to serve outgoing directory: " << result.status_string(); return -1; } // Register a handler for components trying to connect to // |examples.canvas.clientrequesteddraw.Instance|. result = outgoing.AddUnmanagedProtocol<examples_canvas_clientrequesteddraw::Instance>( [dispatcher](fidl::ServerEnd<examples_canvas_clientrequesteddraw::Instance> server_end) { // Create an instance of our InstanceImpl that destroys itself when the connection closes. new InstanceImpl(dispatcher, std::move(server_end)); }); if (result.is_error()) { FX_LOGS(ERROR) << "Failed to add Instance protocol: " << result.status_string(); return -1; } // Everything is wired up. Sit back and run the loop until an incoming connection wakes us up. FX_LOGS(INFO) << "Listening for incoming connections"; loop.Run(); return 0; }
C++(有线)
客户端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <fidl/examples.canvas.clientrequesteddraw/cpp/wire.h> #include <lib/async-loop/cpp/loop.h> #include <lib/component/incoming/cpp/protocol.h> #include <lib/syslog/cpp/macros.h> #include <unistd.h> #include <charconv> #include <examples/fidl/new/canvas/client_requested_draw/cpp_wire/client/config.h> // The |EventHandler| is a derived class that we pass into the |fidl::WireClient| to handle incoming // events asynchronously. class EventHandler : public fidl::WireAsyncEventHandler<examples_canvas_clientrequesteddraw::Instance> { public: // Handler for |OnDrawn| events sent from the server. void OnDrawn( fidl::WireEvent<examples_canvas_clientrequesteddraw::Instance::OnDrawn>* event) override { ::examples_canvas_clientrequesteddraw::wire::Point top_left = event->top_left; ::examples_canvas_clientrequesteddraw::wire::Point bottom_right = event->bottom_right; FX_LOGS(INFO) << "OnDrawn event received: top_left: Point { x: " << top_left.x << ", y: " << top_left.y << " }, bottom_right: Point { x: " << bottom_right.x << ", y: " << bottom_right.y << " }"; loop_.Quit(); } void on_fidl_error(fidl::UnbindInfo error) override { FX_LOGS(ERROR) << error; } void handle_unknown_event( fidl::UnknownEventMetadata<examples_canvas_clientrequesteddraw::Instance> metadata) override { FX_LOGS(WARNING) << "Received an unknown event with ordinal " << metadata.event_ordinal; } explicit EventHandler(async::Loop& loop) : loop_(loop) {} private: async::Loop& loop_; }; // A helper function that takes a coordinate in string form, like "123,-456", and parses it into a // a struct of the form |{ in64 x; int64 y; }|. ::examples_canvas_clientrequesteddraw::wire::Point ParsePoint(std::string_view input) { int64_t x = 0; int64_t y = 0; size_t index = input.find(','); if (index != std::string::npos) { std::from_chars(input.data(), input.data() + index, x); std::from_chars(input.data() + index + 1, input.data() + input.length(), y); } return ::examples_canvas_clientrequesteddraw::wire::Point{.x = x, .y = y}; } using Line = ::fidl::Array<::examples_canvas_clientrequesteddraw::wire::Point, 2>; // A helper function that takes a coordinate pair in string form, like "1,2:-3,-4", and parses it // into an array of 2 |Point| structs. Line ParseLine(const std::string& action) { auto input = std::string_view(action); size_t index = input.find(':'); if (index != std::string::npos) { return {ParsePoint(input.substr(0, index)), ParsePoint(input.substr(index + 1))}; } return {}; } int main(int argc, const char** argv) { FX_LOGS(INFO) << "Started"; // Retrieve component configuration. auto conf = config::Config::TakeFromStartupHandle(); // Start up an async loop and dispatcher. async::Loop loop(&kAsyncLoopConfigNeverAttachToThread); async_dispatcher_t* dispatcher = loop.dispatcher(); // Connect to the protocol inside the component's namespace. This can fail so it's wrapped in a // |zx::result| and it must be checked for errors. zx::result client_end = component::Connect<examples_canvas_clientrequesteddraw::Instance>(); if (!client_end.is_ok()) { FX_LOGS(ERROR) << "Synchronous error when connecting to the |Instance| protocol: " << client_end.status_string(); return -1; } // Create an instance of the event handler. EventHandler event_handler(loop); // Create an asynchronous client using the newly-established connection. fidl::WireClient client(std::move(*client_end), dispatcher, &event_handler); FX_LOGS(INFO) << "Outgoing connection enabled"; std::vector<Line> batched_lines; for (const auto& action : conf.script()) { // If the next action in the script is to "PUSH", send a batch of lines to the server. if (action == "PUSH") { fidl::Status status = client->AddLines(fidl::VectorView<Line>::FromExternal(batched_lines)); if (!status.ok()) { // Check that our one-way call was enqueued successfully, and handle the error // appropriately. In the case of this example, there is nothing we can do to recover here, // except to log an error and exit the program. FX_LOGS(ERROR) << "Could not send AddLines request: " << status.error(); return -1; } batched_lines.clear(); FX_LOGS(INFO) << "AddLines request sent"; continue; } // If the next action in the script is to "WAIT", block until an |OnDrawn| event is received // from the server. if (action == "WAIT") { loop.Run(); loop.ResetQuit(); // Now, inform the server that we are ready to receive more updates whenever they are // ready for us. FX_LOGS(INFO) << "Ready request sent"; client->Ready().ThenExactlyOnce( [&](fidl::WireUnownedResult<examples_canvas_clientrequesteddraw::Instance::Ready>& result) { // Check if the FIDL call succeeded or not. if (result.ok()) { FX_LOGS(INFO) << "Ready success"; } else { FX_LOGS(ERROR) << "Could not send Ready request: " << result.error(); } // Quit the loop, thereby handing control back to the outer loop of actions being // iterated over. loop.Quit(); }); // Run the loop until the callback is resolved, at which point we can continue from here. loop.Run(); loop.ResetQuit(); continue; } // Batch a line for drawing to the canvas using the two points provided. Line line = ParseLine(action); batched_lines.push_back(line); FX_LOGS(INFO) << "AddLines batching line: [Point { x: " << line[1].x << ", y: " << line[1].y << " }, Point { x: " << line[0].x << ", y: " << line[0].y << " }]"; } // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the // referenced bug has been resolved, we can remove the sleep. sleep(2); return 0; }
服务器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <fidl/examples.canvas.clientrequesteddraw/cpp/wire.h> #include <lib/async-loop/cpp/loop.h> #include <lib/async/cpp/task.h> #include <lib/component/outgoing/cpp/outgoing_directory.h> #include <lib/fidl/cpp/wire/channel.h> #include <lib/syslog/cpp/macros.h> #include <unistd.h> #include <src/lib/fxl/macros.h> #include <src/lib/fxl/memory/weak_ptr.h> // A struct that stores the two things we care about for this example: the set of lines, and the // bounding box that contains them. struct CanvasState { // Tracks whether there has been a change since the last send, to prevent redundant updates. bool changed = true; // Tracks whether or not the client has declared itself ready to receive more updated. bool ready = true; examples_canvas_clientrequesteddraw::wire::BoundingBox bounding_box; }; // An implementation of the |Instance| protocol. class InstanceImpl final : public fidl::WireServer<examples_canvas_clientrequesteddraw::Instance> { public: // Bind this implementation to a channel. InstanceImpl(async_dispatcher_t* dispatcher, fidl::ServerEnd<examples_canvas_clientrequesteddraw::Instance> server_end) : binding_(dispatcher, std::move(server_end), this, std::mem_fn(&InstanceImpl::OnFidlClosed)), weak_factory_(this) { // Start the update timer on startup. Our server sends one update per second ScheduleOnDrawnEvent(dispatcher, zx::sec(1)); } void OnFidlClosed(fidl::UnbindInfo info) { if (info.reason() != ::fidl::Reason::kPeerClosedWhileReading) { FX_LOGS(ERROR) << "Shutdown unexpectedly"; } delete this; } void AddLines(AddLinesRequestView request, AddLinesCompleter::Sync& completer) override { FX_LOGS(INFO) << "AddLines request received"; for (const auto& points : request->lines) { FX_LOGS(INFO) << "AddLines printing line: [Point { x: " << points[1].x << ", y: " << points[1].y << " }, Point { x: " << points[0].x << ", y: " << points[0].y << " }]"; // Update the bounding box to account for the new line we've just "added" to the canvas. auto& bounds = state_.bounding_box; for (const auto& point : points) { if (point.x < bounds.top_left.x) { bounds.top_left.x = point.x; } if (point.y > bounds.top_left.y) { bounds.top_left.y = point.y; } if (point.x > bounds.bottom_right.x) { bounds.bottom_right.x = point.x; } if (point.y < bounds.bottom_right.y) { bounds.bottom_right.y = point.y; } } } // Mark the state as "dirty", so that an update is sent back to the client on the next |OnDrawn| // event. state_.changed = true; } void Ready(ReadyCompleter::Sync& completer) override { FX_LOGS(INFO) << "Ready request received"; // The client must only call `Ready() -> ();` after receiving an `-> OnDrawn();` event; if two // "consecutive" `Ready() -> ();` calls are received, this interaction has entered an invalid // state, and should be aborted immediately. if (state_.ready == true) { FX_LOGS(ERROR) << "Invalid back-to-back `Ready` requests received"; } state_.ready = true; completer.Reply(); } void handle_unknown_method( fidl::UnknownMethodMetadata<examples_canvas_clientrequesteddraw::Instance> metadata, fidl::UnknownMethodCompleter::Sync& completer) override { FX_LOGS(WARNING) << "Received an unknown method with ordinal " << metadata.method_ordinal; } private: // Each scheduled update waits for the allotted amount of time, sends an update if something has // changed, and schedules the next update. void ScheduleOnDrawnEvent(async_dispatcher_t* dispatcher, zx::duration after) { async::PostDelayedTask( dispatcher, [&, dispatcher, after, weak = weak_factory_.GetWeakPtr()] { // Halt execution if the binding has been deallocated already. if (!weak) { return; } // Schedule the next update if the binding still exists. weak->ScheduleOnDrawnEvent(dispatcher, after); // No need to send an update if nothing has changed since the last one, or the client has // not yet informed us that it is ready for more updates. if (!weak->state_.changed || !weak->state_.ready) { return; } // This is where we would draw the actual lines. Since this is just an example, we'll // avoid doing the actual rendering, and simply send the bounding box to the client // instead. auto top_left = weak->state_.bounding_box.top_left; auto bottom_right = weak->state_.bounding_box.bottom_right; fidl::Status status = fidl::WireSendEvent(weak->binding_)->OnDrawn(top_left, bottom_right); if (!status.ok()) { return; } FX_LOGS(INFO) << "OnDrawn event sent: top_left: Point { x: " << top_left.x << ", y: " << top_left.y << " }, bottom_right: Point { x: " << bottom_right.x << ", y: " << bottom_right.y << " }"; // Reset the change and ready trackers. state_.ready = false; weak->state_.changed = false; }, after); } fidl::ServerBinding<examples_canvas_clientrequesteddraw::Instance> binding_; CanvasState state_ = CanvasState{}; // Generates weak references to this object, which are appropriate to pass into asynchronous // callbacks that need to access this object. The references are automatically invalidated // if this object is destroyed. fxl::WeakPtrFactory<InstanceImpl> weak_factory_; }; int main(int argc, char** argv) { FX_LOGS(INFO) << "Started"; // The event loop is used to asynchronously listen for incoming connections and requests from the // client. The following initializes the loop, and obtains the dispatcher, which will be used when // binding the server implementation to a channel. async::Loop loop(&kAsyncLoopConfigNeverAttachToThread); async_dispatcher_t* dispatcher = loop.dispatcher(); // Create an |OutgoingDirectory| instance. // // The |component::OutgoingDirectory| class serves the outgoing directory for our component. This // directory is where the outgoing FIDL protocols are installed so that they can be provided to // other components. component::OutgoingDirectory outgoing = component::OutgoingDirectory(dispatcher); // The `ServeFromStartupInfo()` function sets up the outgoing directory with the startup handle. // The startup handle is a handle provided to every component by the system, so that they can // serve capabilities (e.g. FIDL protocols) to other components. zx::result result = outgoing.ServeFromStartupInfo(); if (result.is_error()) { FX_LOGS(ERROR) << "Failed to serve outgoing directory: " << result.status_string(); return -1; } // Register a handler for components trying to connect to // |examples.canvas.clientrequesteddraw.Instance|. result = outgoing.AddUnmanagedProtocol<examples_canvas_clientrequesteddraw::Instance>( [dispatcher](fidl::ServerEnd<examples_canvas_clientrequesteddraw::Instance> server_end) { // Create an instance of our InstanceImpl that destroys itself when the connection closes. new InstanceImpl(dispatcher, std::move(server_end)); }); if (result.is_error()) { FX_LOGS(ERROR) << "Failed to add Instance protocol: " << result.status_string(); return -1; } // Everything is wired up. Sit back and run the loop until an incoming connection wakes us up. FX_LOGS(INFO) << "Listening for incoming connections"; loop.Run(); return 0; }
HLCPP
客户端
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <lib/async-loop/cpp/loop.h> #include <lib/sys/cpp/component_context.h> #include <lib/syslog/cpp/macros.h> #include <unistd.h> #include <charconv> #include <examples/canvas/clientrequesteddraw/cpp/fidl.h> #include <examples/fidl/new/canvas/client_requested_draw/hlcpp/client/config.h> // A helper function that takes a coordinate in string form, like "123,-456", and parses it into a // a struct of the form |{ in64 x; int64 y; }|. ::examples::canvas::clientrequesteddraw::Point ParsePoint(std::string_view input) { int64_t x = 0; int64_t y = 0; size_t index = input.find(','); if (index != std::string::npos) { std::from_chars(input.data(), input.data() + index, x); std::from_chars(input.data() + index + 1, input.data() + input.length(), y); } return ::examples::canvas::clientrequesteddraw::Point{.x = x, .y = y}; } using Line = ::std::array<::examples::canvas::clientrequesteddraw::Point, 2>; // A helper function that takes a coordinate pair in string form, like "1,2:-3,-4", and parses it // into an array of 2 |Point| structs. Line ParseLine(const std::string& action) { auto input = std::string_view(action); size_t index = input.find(':'); if (index != std::string::npos) { return {ParsePoint(input.substr(0, index)), ParsePoint(input.substr(index + 1))}; } return {}; } int main(int argc, const char** argv) { FX_LOGS(INFO) << "Started"; // Retrieve component configuration. auto conf = config::Config::TakeFromStartupHandle(); // Start up an async loop. async::Loop loop(&kAsyncLoopConfigNeverAttachToThread); async_dispatcher_t* dispatcher = loop.dispatcher(); // Connect to the protocol inside the component's namespace, then create an asynchronous client // using the newly-established connection. examples::canvas::clientrequesteddraw::InstancePtr instance_proxy; auto context = sys::ComponentContext::Create(); context->svc()->Connect(instance_proxy.NewRequest(dispatcher)); FX_LOGS(INFO) << "Outgoing connection enabled"; instance_proxy.set_error_handler([&loop](zx_status_t status) { FX_LOGS(ERROR) << "Shutdown unexpectedly"; loop.Quit(); }); // Provide a lambda to handle incoming |OnDrawn| events asynchronously. instance_proxy.events().OnDrawn = [&loop](::examples::canvas::clientrequesteddraw::Point top_left, ::examples::canvas::clientrequesteddraw::Point bottom_right) { FX_LOGS(INFO) << "OnDrawn event received: top_left: Point { x: " << top_left.x << ", y: " << top_left.y << " }, bottom_right: Point { x: " << bottom_right.x << ", y: " << bottom_right.y << " }"; loop.Quit(); }; instance_proxy.events().handle_unknown_event = [](uint64_t ordinal) { FX_LOGS(WARNING) << "Received an unknown event with ordinal " << ordinal; }; std::vector<Line> batched_lines; for (const auto& action : conf.script()) { // If the next action in the script is to "PUSH", send a batch of lines to the server. if (action == "PUSH") { instance_proxy->AddLines(batched_lines); batched_lines.clear(); FX_LOGS(INFO) << "AddLines request sent"; continue; } // If the next action in the script is to "WAIT", block until an |OnDrawn| event is received // from the server. if (action == "WAIT") { loop.Run(); loop.ResetQuit(); // Now, inform the server that we are ready to receive more updates whenever they are ready // for us. FX_LOGS(INFO) << "Ready request sent"; instance_proxy->Ready([&](fpromise::result<void, fidl::FrameworkErr> result) { if (result.is_error()) { // Check that our flexible two-way call was known to the server and handle the case of an // unknown method appropriately. In the case of this example, there is nothing we can do // to recover here, except to log an error and exit the program. FX_LOGS(ERROR) << "Server does not implement AddLine"; } FX_LOGS(INFO) << "Ready success"; // Quit the loop, thereby handing control back to the outer loop of actions being iterated // over. loop.Quit(); }); // Run the loop until the callback is resolved, at which point we can continue from here. loop.Run(); loop.ResetQuit(); continue; } // Batch a line for drawing to the canvas using the two points provided. Line line = ParseLine(action); batched_lines.push_back(line); FX_LOGS(INFO) << "AddLines batching line: [Point { x: " << line[1].x << ", y: " << line[1].y << " }, Point { x: " << line[0].x << ", y: " << line[0].y << " }]"; } // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the // referenced bug has been resolved, we can remove the sleep. sleep(2); return 0; }
服务器
// Copyright 2022 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <lib/async-loop/cpp/loop.h> #include <lib/async-loop/default.h> #include <lib/async/cpp/task.h> #include <lib/fidl/cpp/binding.h> #include <lib/sys/cpp/component_context.h> #include <lib/syslog/cpp/macros.h> #include <unistd.h> #include <examples/canvas/clientrequesteddraw/cpp/fidl.h> #include <src/lib/fxl/macros.h> #include <src/lib/fxl/memory/weak_ptr.h> // A struct that stores the two things we care about for this example: the set of lines, and the // bounding box that contains them. struct CanvasState { // Tracks whether there has been a change since the last send, to prevent redundant updates. bool changed = true; // Tracks whether or not the client has declared itself ready to receive more updated. bool ready = true; examples::canvas::clientrequesteddraw::BoundingBox bounding_box; }; using Line = ::std::array<::examples::canvas::clientrequesteddraw::Point, 2>; // An implementation of the |Instance| protocol. class InstanceImpl final : public examples::canvas::clientrequesteddraw::Instance { public: // Bind this implementation to an |InterfaceRequest|. InstanceImpl(async_dispatcher_t* dispatcher, fidl::InterfaceRequest<examples::canvas::clientrequesteddraw::Instance> request) : binding_(fidl::Binding<examples::canvas::clientrequesteddraw::Instance>(this)), weak_factory_(this) { binding_.Bind(std::move(request), dispatcher); // Gracefully handle abrupt shutdowns. binding_.set_error_handler([this](zx_status_t status) mutable { if (status != ZX_ERR_PEER_CLOSED) { FX_LOGS(ERROR) << "Shutdown unexpectedly"; } delete this; }); // Start the update timer on startup. Our server sends one update per second. ScheduleOnDrawnEvent(dispatcher, zx::sec(1)); } void AddLines(std::vector<Line> lines) override { FX_LOGS(INFO) << "AddLines request received"; for (const auto& points : lines) { FX_LOGS(INFO) << "AddLines printing line: [Point { x: " << points[1].x << ", y: " << points[1].y << " }, Point { x: " << points[0].x << ", y: " << points[0].y << " }]"; // Update the bounding box to account for the new line we've just "added" to the canvas. auto& bounds = state_.bounding_box; for (const auto& point : points) { if (point.x < bounds.top_left.x) { bounds.top_left.x = point.x; } if (point.y > bounds.top_left.y) { bounds.top_left.y = point.y; } if (point.x > bounds.bottom_right.x) { bounds.bottom_right.x = point.x; } if (point.y < bounds.bottom_right.y) { bounds.bottom_right.y = point.y; } } } // Mark the state as "dirty", so that an update is sent back to the client on the next // |OnDrawn| event. state_.changed = true; } void Ready(ReadyCallback callback) override { FX_LOGS(INFO) << "Ready request received"; // The client must only call `Ready() -> ();` after receiving an `-> OnDrawn();` event; if // two "consecutive" `Ready() -> ();` calls are received, this interaction has entered an // invalid state, and should be aborted immediately. if (state_.ready == true) { FX_LOGS(ERROR) << "Invalid back-to-back `Ready` requests received"; } state_.ready = true; callback(fpromise::ok()); } void handle_unknown_method(uint64_t ordinal, bool method_has_response) override { FX_LOGS(WARNING) << "Received an unknown method with ordinal " << ordinal; } private: // Each scheduled update waits for the allotted amount of time, sends an update if something // has changed, and schedules the next update. void ScheduleOnDrawnEvent(async_dispatcher_t* dispatcher, zx::duration after) { async::PostDelayedTask( dispatcher, [&, dispatcher, after, weak = weak_factory_.GetWeakPtr()] { // Halt execution if the binding has been deallocated already. if (!weak) { return; } // Schedule the next update if the binding still exists. weak->ScheduleOnDrawnEvent(dispatcher, after); // No need to send an update if nothing has changed since the last one, or the client // has not yet informed us that it is ready for more updates. if (!weak->state_.changed || !weak->state_.ready) { return; } // This is where we would draw the actual lines. Since this is just an example, we'll // avoid doing the actual rendering, and simply send the bounding box to the client // instead. auto top_left = state_.bounding_box.top_left; auto bottom_right = state_.bounding_box.bottom_right; binding_.events().OnDrawn(top_left, bottom_right); FX_LOGS(INFO) << "OnDrawn event sent: top_left: Point { x: " << top_left.x << ", y: " << top_left.y << " }, bottom_right: Point { x: " << bottom_right.x << ", y: " << bottom_right.y << " }"; // Reset the change and ready trackers. state_.ready = false; state_.changed = false; }, after); } fidl::Binding<examples::canvas::clientrequesteddraw::Instance> binding_; CanvasState state_ = CanvasState{}; // Generates weak references to this object, which are appropriate to pass into asynchronous // callbacks that need to access this object. The references are automatically invalidated // if this object is destroyed. fxl::WeakPtrFactory<InstanceImpl> weak_factory_; }; int main(int argc, char** argv) { FX_LOGS(INFO) << "Started"; // The event loop is used to asynchronously listen for incoming connections and requests from // the client. The following initializes the loop, and obtains the dispatcher, which will be // used when binding the server implementation to a channel. // // Note that unlike the new C++ bindings, HLCPP bindings rely on the async loop being attached // to the current thread via the |kAsyncLoopConfigAttachToCurrentThread| configuration. async::Loop loop(&kAsyncLoopConfigAttachToCurrentThread); async_dispatcher_t* dispatcher = loop.dispatcher(); // Create an |OutgoingDirectory| instance. // // The |component::OutgoingDirectory| class serves the outgoing directory for our component. // This directory is where the outgoing FIDL protocols are installed so that they can be // provided to other components. auto context = sys::ComponentContext::CreateAndServeOutgoingDirectory(); // Register a handler for components trying to connect to // |examples.canvas.clientrequesteddraw.Instance|. context->outgoing()->AddPublicService( fidl::InterfaceRequestHandler<examples::canvas::clientrequesteddraw::Instance>( [dispatcher]( fidl::InterfaceRequest<examples::canvas::clientrequesteddraw::Instance> request) { // Create an instance of our |InstanceImpl| that destroys itself when the connection // closes. new InstanceImpl(dispatcher, std::move(request)); })); // Everything is wired up. Sit back and run the loop until an incoming connection wakes us up. FX_LOGS(INFO) << "Listening for incoming connections"; loop.Run(); return 0; }