FIDL 範例:Canvas

在這個範例中,我們會先建立 2D 線條繪製畫布,然後繼續 透過 FIDL 常用的各種資料流程模式來增強其功能, 例如在連線的兩端實施流量控制 減少來回傳遞訊息的數量。

開始使用

這個基準案例展示了簡易畫布的端對端實作 使用 FIDL這項設計會指定 Canvas 通訊協定,讓用戶端 透過 AddLine 方法在畫布中加入線條,並接收繪圖更新 透過 OnDrawn 事件從伺服器載入。

我們在這裡設計的通訊協定為可正常運作,但對於這兩者 效能和流量控制例如目前的「重新整理頻率」是 (每秒 1 個影格)。如果我們決定每 60 個影格數更新一次,會發生什麼情況? (例如大約每 16 毫秒,而非每秒一次)?可能 OnDrawn 項事件會令客戶感到不堪負荷嗎?相反地 用戶端載入會一次傳送多個 AddLine 要求,也許在載入之後 要從檔案匯入嗎?現在伺服器是否在負載下遭到破壞?

最好將這種未經調節的實作方式視為首次傳遞 用於示範部分功能的簡易通訊協定 再做一些改善,以擷取最佳效能,特別是在壓力下。

首先,我們必須定義介面定義並測試控管工具。FIDL CML 和領域介面定義會設定一個 Scaffold 導入方式可以使用:

FIDL

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
library examples.canvas.baseline;

/// A point in 2D space.
type Point = struct {
    x int64;
    y int64;
};

/// A line in 2D space.
alias Line = array<Point, 2>;

/// A bounding box in 2D space. This is the result of "drawing" operations on our canvas, and what
/// the server reports back to the client. These bounds are sufficient to contain all of the
/// lines (inclusive) on a canvas at a given time.
type BoundingBox = struct {
    top_left Point;
    bottom_right Point;
};

/// Manages a single instance of a canvas. Each session of this protocol is responsible for a new
/// canvas.
@discoverable
open protocol Instance {
    /// Add a line to the canvas.
    flexible AddLine(struct {
        line Line;
    });

    /// Update the client with the latest drawing state. The server makes no guarantees about how
    /// often this event occurs - it could occur multiple times per board state, for example.
    flexible -> OnDrawn(BoundingBox);
};

CML

用戶端

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
{
    include: [ "syslog/client.shard.cml" ],
    program: {
        runner: "elf",
        binary: "bin/client_bin",
    },
    use: [
        { protocol: "examples.canvas.baseline.Instance" },
    ],
    config: {
        // A script for the client to follow. Entries in the script may take one of two forms: a
        // pair of signed-integer coordinates like "-2,15:4,5", the string "PUSH", or the string
        // "WAIT". The former builds entries for a call to  `AddLines(...)`, "PUSH" makes the
        // `AddLines` call, and "WAIT" execution until the next `->OnDrawn(...)` event is received.
        //
        // TODO(https://fxbug.dev/42178362): It would absolve individual language implementations of a great
        //   deal of string parsing if we were able to use a vector of `union { Point; Push, Wait}`
        //   here.
        script: {
            type: "vector",
            max_count: 100,
            element: {
                type: "string",
                max_size: 64,
            },
        },

    },
}

伺服器

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
{
    include: [ "syslog/client.shard.cml" ],
    program: {
        runner: "elf",
        binary: "bin/server_bin",
    },
    capabilities: [
        { protocol: "examples.canvas.baseline.Instance" },
    ],
    expose: [
        {
            protocol: "examples.canvas.baseline.Instance",
            from: "self",
        },
    ],
}

領域

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
{
    children: [
        {
            name: "client",
            url: "#meta/client.cm",
        },
        {
            name: "server",
            url: "#meta/server.cm",
        },
    ],
    offer: [
        // Route the protocol under test from the server to the client.
        {
            protocol: "examples.canvas.baseline.Instance",
            from: "#server",
            to: "#client",
        },

        // Route diagnostics support to all children.
        {
            protocol: [
                "fuchsia.inspect.InspectSink",
                "fuchsia.logger.LogSink",
            ],
            from: "parent",
            to: [
                "#client",
                "#server",
            ],
        },
    ],
}

用戶端和伺服器實作項目現在可以使用任何支援的語言編寫:

荒漠油廠

用戶端

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use anyhow::{format_err, Context as _, Error};
use config::Config;
use fidl_examples_canvas_baseline::{InstanceEvent, InstanceMarker, Point};
use fuchsia_component::client::connect_to_protocol;
use futures::TryStreamExt;
use std::{thread, time};

#[fuchsia::main]
async fn main() -> Result<(), Error> {
    println!("Started");

    // Load the structured config values passed to this component at startup.
    let config = Config::take_from_startup_handle();

    // Use the Component Framework runtime to connect to the newly spun up server component. We wrap
    // our retained client end in a proxy object that lets us asynchronously send Instance requests
    // across the channel.
    let instance = connect_to_protocol::<InstanceMarker>()?;
    println!("Outgoing connection enabled");

    for action in config.script.into_iter() {
        // If the next action in the script is to "WAIT", block until an OnDrawn event is received
        // from the server.
        if action == "WAIT" {
            let mut event_stream = instance.take_event_stream();
            loop {
                match event_stream
                    .try_next()
                    .await
                    .context("Error getting event response from proxy")?
                    .ok_or_else(|| format_err!("Proxy sent no events"))?
                {
                    InstanceEvent::OnDrawn { top_left, bottom_right } => {
                        println!(
                            "OnDrawn event received: top_left: {:?}, bottom_right: {:?}",
                            top_left, bottom_right
                        );
                        break;
                    }
                    InstanceEvent::_UnknownEvent { ordinal, .. } => {
                        println!("Received an unknown event with ordinal {ordinal}");
                    }
                }
            }
            continue;
        }

        // If the action is not a "WAIT", we need to draw a line instead. Parse the string input,
        // making two points out of it.
        let mut points = action
            .split(":")
            .map(|point| {
                let integers = point
                    .split(",")
                    .map(|integer| integer.parse::<i64>().unwrap())
                    .collect::<Vec<i64>>();
                Point { x: integers[0], y: integers[1] }
            })
            .collect::<Vec<Point>>();

        // Assemble a line from the two points.
        let from = points.pop().ok_or(format_err!("line requires 2 points, but has 0"))?;
        let to = points.pop().ok_or(format_err!("line requires 2 points, but has 1"))?;
        let line = [from, to];

        // Draw a line to the canvas by calling the server, using the two points we just parsed
        // above as arguments.
        instance.add_line(&line)?;
        println!("AddLine request sent: {:?}", line);
    }

    // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the
    // referenced bug has been resolved, we can remove the sleep.
    thread::sleep(time::Duration::from_secs(2));
    Ok(())
}

伺服器

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use anyhow::{Context as _, Error};
use fidl::endpoints::RequestStream as _;
use fidl_examples_canvas_baseline::{BoundingBox, InstanceRequest, InstanceRequestStream, Point};
use fuchsia_async::{Time, Timer};
use fuchsia_component::server::ServiceFs;
use fuchsia_zircon::{self as zx};
use futures::future::join;
use futures::prelude::*;
use std::sync::{Arc, Mutex};

// A struct that stores the two things we care about for this example: the bounding box the lines
// that have been added thus far, and bit to track whether or not there have been changes since the
// last `OnDrawn` event.
#[derive(Debug)]
struct CanvasState {
    // Tracks whether there has been a change since the last send, to prevent redundant updates.
    changed: bool,
    bounding_box: BoundingBox,
}

/// Handler for the `AddLine` method.
fn add_line(state: &mut CanvasState, line: [Point; 2]) {
    // Update the bounding box to account for the new lines we've just "added" to the canvas.
    let bounds = &mut state.bounding_box;
    for point in line {
        if point.x < bounds.top_left.x {
            bounds.top_left.x = point.x;
        }
        if point.y > bounds.top_left.y {
            bounds.top_left.y = point.y;
        }
        if point.x > bounds.bottom_right.x {
            bounds.bottom_right.x = point.x;
        }
        if point.y < bounds.bottom_right.y {
            bounds.bottom_right.y = point.y;
        }
    }

    // Mark the state as "dirty", so that an update is sent back to the client on the next tick.
    state.changed = true
}

/// Creates a new instance of the server, paired to a single client across a zircon channel.
async fn run_server(stream: InstanceRequestStream) -> Result<(), Error> {
    // Create a new in-memory state store for the state of the canvas. The store will live for the
    // lifetime of the connection between the server and this particular client.
    let state = Arc::new(Mutex::new(CanvasState {
        changed: true,
        bounding_box: BoundingBox {
            top_left: Point { x: 0, y: 0 },
            bottom_right: Point { x: 0, y: 0 },
        },
    }));

    // Take ownership of the control_handle from the stream, which will allow us to push events from
    // a different async task.
    let control_handle = stream.control_handle();

    // A separate watcher task periodically "draws" the canvas, and notifies the client of the new
    // state. We'll need a cloned reference to the canvas state to be accessible from the new
    // task.
    let state_ref = state.clone();
    let update_sender = || async move {
        loop {
            // Our server sends one update per second.
            Timer::new(Time::after(zx::Duration::from_seconds(1))).await;
            let mut state = state_ref.lock().unwrap();
            if !state.changed {
                continue;
            }

            // After acquiring the lock, this is where we would draw the actual lines. Since this is
            // just an example, we'll avoid doing the actual rendering, and simply send the bounding
            // box to the client instead.
            let bounds = state.bounding_box;
            match control_handle.send_on_drawn(&bounds.top_left, &bounds.bottom_right) {
                Ok(_) => println!(
                    "OnDrawn event sent: top_left: {:?}, bottom_right: {:?}",
                    bounds.top_left, bounds.bottom_right
                ),
                Err(_) => return,
            }

            // Reset the change tracker.
            state.changed = false
        }
    };

    // Handle requests on the protocol sequentially - a new request is not handled until its
    // predecessor has been processed.
    let state_ref = &state;
    let request_handler =
        stream.map(|result| result.context("failed request")).try_for_each(|request| async move {
            // Match based on the method being invoked.
            match request {
                InstanceRequest::AddLine { line, .. } => {
                    println!("AddLine request received: {:?}", line);
                    add_line(&mut state_ref.lock().unwrap(), line);
                }
                InstanceRequest::_UnknownMethod { ordinal, .. } => {
                    println!("Received an unknown method with ordinal {ordinal}");
                }
            }
            Ok(())
        });

    // This line will only be reached if the server errors out. The stream will await indefinitely,
    // thereby creating a long-lived server. Here, we first wait for the updater task to realize the
    // connection has died, then bubble up the error.
    join(request_handler, update_sender()).await.0
}

// A helper enum that allows us to treat a `Instance` service instance as a value.
enum IncomingService {
    Instance(InstanceRequestStream),
}

#[fuchsia::main]
async fn main() -> Result<(), Error> {
    println!("Started");

    // Add a discoverable instance of our `Instance` protocol - this will allow the client to see
    // the server and connect to it.
    let mut fs = ServiceFs::new_local();
    fs.dir("svc").add_fidl_service(IncomingService::Instance);
    fs.take_and_serve_directory_handle()?;
    println!("Listening for incoming connections");

    // The maximum number of concurrent clients that may be served by this process.
    const MAX_CONCURRENT: usize = 10;

    // Serve each connection simultaneously, up to the `MAX_CONCURRENT` limit.
    fs.for_each_concurrent(MAX_CONCURRENT, |IncomingService::Instance(stream)| {
        run_server(stream).unwrap_or_else(|e| println!("{:?}", e))
    })
    .await;

    Ok(())
}

C++ (自然)

用戶端

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <fidl/examples.canvas.baseline/cpp/fidl.h>
#include <lib/async-loop/cpp/loop.h>
#include <lib/component/incoming/cpp/protocol.h>
#include <lib/syslog/cpp/macros.h>
#include <unistd.h>

#include <charconv>

#include <examples/fidl/new/canvas/baseline/cpp_natural/client/config.h>

// The |EventHandler| is a derived class that we pass into the |fidl::WireClient| to handle incoming
// events asynchronously.
class EventHandler : public fidl::AsyncEventHandler<examples_canvas_baseline::Instance> {
 public:
  // Handler for |OnDrawn| events sent from the server.
  void OnDrawn(fidl::Event<examples_canvas_baseline::Instance::OnDrawn>& event) override {
    ::examples_canvas_baseline::Point top_left = event.top_left();
    ::examples_canvas_baseline::Point bottom_right = event.bottom_right();
    FX_LOGS(INFO) << "OnDrawn event received: top_left: Point { x: " << top_left.x()
                  << ", y: " << top_left.y() << " }, bottom_right: Point { x: " << bottom_right.x()
                  << ", y: " << bottom_right.y() << " }";
    loop_.Quit();
  }

  void on_fidl_error(fidl::UnbindInfo error) override { FX_LOGS(ERROR) << error; }

  void handle_unknown_event(
      fidl::UnknownEventMetadata<examples_canvas_baseline::Instance> metadata) override {
    FX_LOGS(WARNING) << "Received an unknown event with ordinal " << metadata.event_ordinal;
  }

  explicit EventHandler(async::Loop& loop) : loop_(loop) {}

 private:
  async::Loop& loop_;
};

// A helper function that takes a coordinate in string form, like "123,-456", and parses it into a
// a struct of the form |{ in64 x; int64 y; }|.
::examples_canvas_baseline::Point ParsePoint(std::string_view input) {
  int64_t x = 0;
  int64_t y = 0;
  size_t index = input.find(',');
  if (index != std::string::npos) {
    std::from_chars(input.data(), input.data() + index, x);
    std::from_chars(input.data() + index + 1, input.data() + input.length(), y);
  }
  return ::examples_canvas_baseline::Point(x, y);
}

using Line = ::std::array<::examples_canvas_baseline::Point, 2>;

// A helper function that takes a coordinate pair in string form, like "1,2:-3,-4", and parses it
// into an array of 2 |Point| structs.
Line ParseLine(const std::string& action) {
  auto input = std::string_view(action);
  size_t index = input.find(':');
  if (index != std::string::npos) {
    return {ParsePoint(input.substr(0, index)), ParsePoint(input.substr(index + 1))};
  }
  return {};
}

int main(int argc, const char** argv) {
  FX_LOGS(INFO) << "Started";

  // Retrieve component configuration.
  auto conf = config::Config::TakeFromStartupHandle();

  // Start up an async loop and dispatcher.
  async::Loop loop(&kAsyncLoopConfigNeverAttachToThread);
  async_dispatcher_t* dispatcher = loop.dispatcher();

  // Connect to the protocol inside the component's namespace. This can fail so it's wrapped in a
  // |zx::result| and it must be checked for errors.
  zx::result client_end = component::Connect<examples_canvas_baseline::Instance>();
  if (!client_end.is_ok()) {
    FX_LOGS(ERROR) << "Synchronous error when connecting to the |Instance| protocol: "
                   << client_end.status_string();
    return -1;
  }

  // Create an instance of the event handler.
  EventHandler event_handler(loop);

  // Create an asynchronous client using the newly-established connection.
  fidl::Client client(std::move(*client_end), dispatcher, &event_handler);
  FX_LOGS(INFO) << "Outgoing connection enabled";

  for (const auto& action : conf.script()) {
    // If the next action in the script is to "WAIT", block until an |OnDrawn| event is received
    // from the server.
    if (action == "WAIT") {
      loop.Run();
      loop.ResetQuit();
      continue;
    }

    // Draw a line to the canvas by calling the server, using the two points we just parsed
    // above as arguments.
    Line line = ParseLine(action);
    fit::result<fidl::Error> result = client->AddLine(line);
    if (!result.is_ok()) {
      // Check that our one-way call was enqueued successfully, and handle the error appropriately.
      // In the case of this example, there is nothing we can do to recover here, except to log an
      // error and exit the program.
      FX_LOGS(ERROR) << "Could not send AddLine request: " << result.error_value();
      return -1;
    }

    FX_LOGS(INFO) << "AddLine request sent: [Point { x: " << line[1].x() << ", y: " << line[1].y()
                  << " }, Point { x: " << line[0].x() << ", y: " << line[0].y() << " }]";
  }

  // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the
  // referenced bug has been resolved, we can remove the sleep.
  sleep(2);
  return 0;
}

伺服器

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <fidl/examples.canvas.baseline/cpp/fidl.h>
#include <lib/async-loop/cpp/loop.h>
#include <lib/async/cpp/task.h>
#include <lib/component/outgoing/cpp/outgoing_directory.h>
#include <lib/fidl/cpp/wire/channel.h>
#include <lib/syslog/cpp/macros.h>
#include <unistd.h>

#include <src/lib/fxl/macros.h>
#include <src/lib/fxl/memory/weak_ptr.h>

// A struct that stores the two things we care about for this example: the set of lines, and the
// bounding box that contains them.
struct CanvasState {
  // Tracks whether there has been a change since the last send, to prevent redundant updates.
  bool changed = true;
  examples_canvas_baseline::BoundingBox bounding_box;
};

// An implementation of the |Instance| protocol.
class InstanceImpl final : public fidl::Server<examples_canvas_baseline::Instance> {
 public:
  // Bind this implementation to a channel.
  InstanceImpl(async_dispatcher_t* dispatcher,
               fidl::ServerEnd<examples_canvas_baseline::Instance> server_end)
      : binding_(dispatcher, std::move(server_end), this, std::mem_fn(&InstanceImpl::OnFidlClosed)),
        weak_factory_(this) {
    // Start the update timer on startup. Our server sends one update per second
    ScheduleOnDrawnEvent(dispatcher, zx::sec(1));
  }

  void OnFidlClosed(fidl::UnbindInfo info) {
    if (info.reason() != ::fidl::Reason::kPeerClosedWhileReading) {
      FX_LOGS(ERROR) << "Shutdown unexpectedly";
    }
    delete this;
  }

  void AddLine(AddLineRequest& request, AddLineCompleter::Sync& completer) override {
    auto points = request.line();
    FX_LOGS(INFO) << "AddLine request received: [Point { x: " << points[1].x()
                  << ", y: " << points[1].y() << " }, Point { x: " << points[0].x()
                  << ", y: " << points[0].y() << " }]";

    // Update the bounding box to account for the new line we've just "added" to the canvas.
    auto& bounds = state_.bounding_box;
    for (const auto& point : request.line()) {
      if (point.x() < bounds.top_left().x()) {
        bounds.top_left().x() = point.x();
      }
      if (point.y() > bounds.top_left().y()) {
        bounds.top_left().y() = point.y();
      }
      if (point.x() > bounds.bottom_right().x()) {
        bounds.bottom_right().x() = point.x();
      }
      if (point.y() < bounds.bottom_right().y()) {
        bounds.bottom_right().y() = point.y();
      }
    }

    // Mark the state as "dirty", so that an update is sent back to the client on the next |OnDrawn|
    // event.
    state_.changed = true;
  }

  void handle_unknown_method(
      fidl::UnknownMethodMetadata<examples_canvas_baseline::Instance> metadata,
      fidl::UnknownMethodCompleter::Sync& completer) override {
    FX_LOGS(WARNING) << "Received an unknown method with ordinal " << metadata.method_ordinal;
  }

 private:
  // Each scheduled update waits for the allotted amount of time, sends an update if something has
  // changed, and schedules the next update.
  void ScheduleOnDrawnEvent(async_dispatcher_t* dispatcher, zx::duration after) {
    async::PostDelayedTask(
        dispatcher,
        [&, dispatcher, after, weak = weak_factory_.GetWeakPtr()] {
          // Halt execution if the binding has been deallocated already.
          if (!weak) {
            return;
          }

          // Schedule the next update if the binding still exists.
          weak->ScheduleOnDrawnEvent(dispatcher, after);

          // No need to send an update if nothing has changed since the last one.
          if (!weak->state_.changed) {
            return;
          }

          // This is where we would draw the actual lines. Since this is just an example, we'll
          // avoid doing the actual rendering, and simply send the bounding box to the client
          // instead.
          auto result = fidl::SendEvent(binding_)->OnDrawn(state_.bounding_box);
          if (!result.is_ok()) {
            return;
          }

          auto top_left = state_.bounding_box.top_left();
          auto bottom_right = state_.bounding_box.bottom_right();
          FX_LOGS(INFO) << "OnDrawn event sent: top_left: Point { x: " << top_left.x()
                        << ", y: " << top_left.y()
                        << " }, bottom_right: Point { x: " << bottom_right.x()
                        << ", y: " << bottom_right.y() << " }";

          // Reset the change tracker.
          state_.changed = false;
        },
        after);
  }

  fidl::ServerBinding<examples_canvas_baseline::Instance> binding_;
  CanvasState state_ = CanvasState{};

  // Generates weak references to this object, which are appropriate to pass into asynchronous
  // callbacks that need to access this object. The references are automatically invalidated
  // if this object is destroyed.
  fxl::WeakPtrFactory<InstanceImpl> weak_factory_;
};

int main(int argc, char** argv) {
  FX_LOGS(INFO) << "Started";

  // The event loop is used to asynchronously listen for incoming connections and requests from the
  // client. The following initializes the loop, and obtains the dispatcher, which will be used when
  // binding the server implementation to a channel.
  async::Loop loop(&kAsyncLoopConfigNeverAttachToThread);
  async_dispatcher_t* dispatcher = loop.dispatcher();

  // Create an |OutgoingDirectory| instance.
  //
  // The |component::OutgoingDirectory| class serves the outgoing directory for our component. This
  // directory is where the outgoing FIDL protocols are installed so that they can be provided to
  // other components.
  component::OutgoingDirectory outgoing = component::OutgoingDirectory(dispatcher);

  // The `ServeFromStartupInfo()` function sets up the outgoing directory with the startup handle.
  // The startup handle is a handle provided to every component by the system, so that they can
  // serve capabilities (e.g. FIDL protocols) to other components.
  zx::result result = outgoing.ServeFromStartupInfo();
  if (result.is_error()) {
    FX_LOGS(ERROR) << "Failed to serve outgoing directory: " << result.status_string();
    return -1;
  }

  // Register a handler for components trying to connect to |examples.canvas.baseline.Instance|.
  result = outgoing.AddUnmanagedProtocol<examples_canvas_baseline::Instance>(
      [dispatcher](fidl::ServerEnd<examples_canvas_baseline::Instance> server_end) {
        // Create an instance of our InstanceImpl that destroys itself when the connection closes.
        new InstanceImpl(dispatcher, std::move(server_end));
      });
  if (result.is_error()) {
    FX_LOGS(ERROR) << "Failed to add Instance protocol: " << result.status_string();
    return -1;
  }

  // Everything is wired up. Sit back and run the loop until an incoming connection wakes us up.
  FX_LOGS(INFO) << "Listening for incoming connections";
  loop.Run();
  return 0;
}

C++ (有線)

用戶端

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <fidl/examples.canvas.baseline/cpp/wire.h>
#include <lib/async-loop/cpp/loop.h>
#include <lib/component/incoming/cpp/protocol.h>
#include <lib/syslog/cpp/macros.h>
#include <unistd.h>

#include <charconv>

#include <examples/fidl/new/canvas/baseline/cpp_wire/client/config.h>

// The |EventHandler| is a derived class that we pass into the |fidl::WireClient| to handle incoming
// events asynchronously.
class EventHandler : public fidl::WireAsyncEventHandler<examples_canvas_baseline::Instance> {
 public:
  // Handler for |OnDrawn| events sent from the server.
  void OnDrawn(fidl::WireEvent<examples_canvas_baseline::Instance::OnDrawn>* event) override {
    ::examples_canvas_baseline::wire::Point top_left = event->top_left;
    ::examples_canvas_baseline::wire::Point bottom_right = event->bottom_right;
    FX_LOGS(INFO) << "OnDrawn event received: top_left: Point { x: " << top_left.x
                  << ", y: " << top_left.y << " }, bottom_right: Point { x: " << bottom_right.x
                  << ", y: " << bottom_right.y << " }";
    loop_.Quit();
  }

  void on_fidl_error(fidl::UnbindInfo error) override { FX_LOGS(ERROR) << error; }

  void handle_unknown_event(
      fidl::UnknownEventMetadata<examples_canvas_baseline::Instance> metadata) override {
    FX_LOGS(WARNING) << "Received an unknown event with ordinal " << metadata.event_ordinal;
  }

  explicit EventHandler(async::Loop& loop) : loop_(loop) {}

 private:
  async::Loop& loop_;
};

// A helper function that takes a coordinate in string form, like "123,-456", and parses it into a
// a struct of the form |{ in64 x; int64 y; }|.
::examples_canvas_baseline::wire::Point ParsePoint(std::string_view input) {
  int64_t x = 0;
  int64_t y = 0;
  size_t index = input.find(',');
  if (index != std::string::npos) {
    std::from_chars(input.data(), input.data() + index, x);
    std::from_chars(input.data() + index + 1, input.data() + input.length(), y);
  }
  return ::examples_canvas_baseline::wire::Point{.x = x, .y = y};
}

using Line = ::fidl::Array<::examples_canvas_baseline::wire::Point, 2>;

// A helper function that takes a coordinate pair in string form, like "1,2:-3,-4", and parses it
// into an array of 2 |Point| structs.
Line ParseLine(const std::string& action) {
  auto input = std::string_view(action);
  size_t index = input.find(':');
  if (index != std::string::npos) {
    return {ParsePoint(input.substr(0, index)), ParsePoint(input.substr(index + 1))};
  }
  return {};
}

int main(int argc, const char** argv) {
  FX_LOGS(INFO) << "Started";

  // Retrieve component configuration.
  auto conf = config::Config::TakeFromStartupHandle();

  // Start up an async loop and dispatcher.
  async::Loop loop(&kAsyncLoopConfigNeverAttachToThread);
  async_dispatcher_t* dispatcher = loop.dispatcher();

  // Connect to the protocol inside the component's namespace. This can fail so it's wrapped in a
  // |zx::result| and it must be checked for errors.
  zx::result client_end = component::Connect<examples_canvas_baseline::Instance>();
  if (!client_end.is_ok()) {
    FX_LOGS(ERROR) << "Synchronous error when connecting to the |Instance| protocol: "
                   << client_end.status_string();
    return -1;
  }

  // Create an instance of the event handler.
  EventHandler event_handler(loop);

  // Create an asynchronous client using the newly-established connection.
  fidl::WireClient client(std::move(*client_end), dispatcher, &event_handler);
  FX_LOGS(INFO) << "Outgoing connection enabled";

  for (const auto& action : conf.script()) {
    // If the next action in the script is to "WAIT", block until an |OnDrawn| event is received
    // from the server.
    if (action == "WAIT") {
      loop.Run();
      loop.ResetQuit();
      continue;
    }

    // Draw a line to the canvas by calling the server, using the two points we just parsed
    // above as arguments.
    Line line = ParseLine(action);
    fidl::Status status = client->AddLine(line);
    if (!status.ok()) {
      // Check that our one-way call was enqueued successfully, and handle the error appropriately.
      // In the case of this example, there is nothing we can do to recover here, except to log an
      // error and exit the program.
      FX_LOGS(ERROR) << "Could not send AddLine request: " << status.status_string();
      return -1;
    }

    FX_LOGS(INFO) << "AddLine request sent: [Point { x: " << line[1].x << ", y: " << line[1].y
                  << " }, Point { x: " << line[0].x << ", y: " << line[0].y << " }]";
  }

  // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the
  // referenced bug has been resolved, we can remove the sleep.
  sleep(2);
  return 0;
}

伺服器

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <fidl/examples.canvas.baseline/cpp/wire.h>
#include <lib/async-loop/cpp/loop.h>
#include <lib/async/cpp/task.h>
#include <lib/component/outgoing/cpp/outgoing_directory.h>
#include <lib/fidl/cpp/wire/channel.h>
#include <lib/syslog/cpp/macros.h>
#include <unistd.h>

#include <src/lib/fxl/macros.h>
#include <src/lib/fxl/memory/weak_ptr.h>

// A struct that stores the two things we care about for this example: the set of lines, and the
// bounding box that contains them.
struct CanvasState {
  // Tracks whether there has been a change since the last send, to prevent redundant updates.
  bool changed = true;
  examples_canvas_baseline::wire::BoundingBox bounding_box;
};

// An implementation of the |Instance| protocol.
class InstanceImpl final : public fidl::WireServer<examples_canvas_baseline::Instance> {
 public:
  // Bind this implementation to a channel.
  InstanceImpl(async_dispatcher_t* dispatcher,
               fidl::ServerEnd<examples_canvas_baseline::Instance> server_end)
      : binding_(dispatcher, std::move(server_end), this, std::mem_fn(&InstanceImpl::OnFidlClosed)),
        weak_factory_(this) {
    // Start the update timer on startup. Our server sends one update per second
    ScheduleOnDrawnEvent(dispatcher, zx::sec(1));
  }

  void OnFidlClosed(fidl::UnbindInfo info) {
    if (info.reason() != ::fidl::Reason::kPeerClosedWhileReading) {
      FX_LOGS(ERROR) << "Shutdown unexpectedly";
    }
    delete this;
  }

  void AddLine(AddLineRequestView request, AddLineCompleter::Sync& completer) override {
    auto points = request->line;
    FX_LOGS(INFO) << "AddLine request received: [Point { x: " << points[1].x
                  << ", y: " << points[1].y << " }, Point { x: " << points[0].x
                  << ", y: " << points[0].y << " }]";

    // Update the bounding box to account for the new line we've just "added" to the canvas.
    auto& bounds = state_.bounding_box;
    for (const auto& point : request->line) {
      if (point.x < bounds.top_left.x) {
        bounds.top_left.x = point.x;
      }
      if (point.y > bounds.top_left.y) {
        bounds.top_left.y = point.y;
      }
      if (point.x > bounds.bottom_right.x) {
        bounds.bottom_right.x = point.x;
      }
      if (point.y < bounds.bottom_right.y) {
        bounds.bottom_right.y = point.y;
      }
    }

    // Mark the state as "dirty", so that an update is sent back to the client on the next |OnDrawn|
    // event.
    state_.changed = true;
  }

  void handle_unknown_method(
      fidl::UnknownMethodMetadata<examples_canvas_baseline::Instance> metadata,
      fidl::UnknownMethodCompleter::Sync& completer) override {
    FX_LOGS(WARNING) << "Received an unknown method with ordinal " << metadata.method_ordinal;
  }

 private:
  // Each scheduled update waits for the allotted amount of time, sends an update if something has
  // changed, and schedules the next update.
  void ScheduleOnDrawnEvent(async_dispatcher_t* dispatcher, zx::duration after) {
    async::PostDelayedTask(
        dispatcher,
        [&, dispatcher, after, weak = weak_factory_.GetWeakPtr()] {
          // Halt execution if the binding has been deallocated already.
          if (!weak) {
            return;
          }

          // Schedule the next update if the binding still exists.
          weak->ScheduleOnDrawnEvent(dispatcher, after);

          // No need to send an update if nothing has changed since the last one.
          if (!weak->state_.changed) {
            return;
          }

          // This is where we would draw the actual lines. Since this is just an example, we'll
          // avoid doing the actual rendering, and simply send the bounding box to the client
          // instead.
          auto top_left = weak->state_.bounding_box.top_left;
          auto bottom_right = weak->state_.bounding_box.bottom_right;
          fidl::Status status =
              fidl::WireSendEvent(weak->binding_)->OnDrawn(top_left, bottom_right);
          if (!status.ok()) {
            return;
          }
          FX_LOGS(INFO) << "OnDrawn event sent: top_left: Point { x: " << top_left.x
                        << ", y: " << top_left.y
                        << " }, bottom_right: Point { x: " << bottom_right.x
                        << ", y: " << bottom_right.y << " }";

          // Reset the change tracker.
          weak->state_.changed = false;
        },
        after);
  }

  fidl::ServerBinding<examples_canvas_baseline::Instance> binding_;
  CanvasState state_ = CanvasState{};

  // Generates weak references to this object, which are appropriate to pass into asynchronous
  // callbacks that need to access this object. The references are automatically invalidated
  // if this object is destroyed.
  fxl::WeakPtrFactory<InstanceImpl> weak_factory_;
};

int main(int argc, char** argv) {
  FX_LOGS(INFO) << "Started";

  // The event loop is used to asynchronously listen for incoming connections and requests from the
  // client. The following initializes the loop, and obtains the dispatcher, which will be used when
  // binding the server implementation to a channel.
  async::Loop loop(&kAsyncLoopConfigNeverAttachToThread);
  async_dispatcher_t* dispatcher = loop.dispatcher();

  // Create an |OutgoingDirectory| instance.
  //
  // The |component::OutgoingDirectory| class serves the outgoing directory for our component. This
  // directory is where the outgoing FIDL protocols are installed so that they can be provided to
  // other components.
  component::OutgoingDirectory outgoing = component::OutgoingDirectory(dispatcher);

  // The `ServeFromStartupInfo()` function sets up the outgoing directory with the startup handle.
  // The startup handle is a handle provided to every component by the system, so that they can
  // serve capabilities (e.g. FIDL protocols) to other components.
  zx::result result = outgoing.ServeFromStartupInfo();
  if (result.is_error()) {
    FX_LOGS(ERROR) << "Failed to serve outgoing directory: " << result.status_string();
    return -1;
  }

  // Register a handler for components trying to connect to |examples.canvas.baseline.Instance|.
  result = outgoing.AddUnmanagedProtocol<examples_canvas_baseline::Instance>(
      [dispatcher](fidl::ServerEnd<examples_canvas_baseline::Instance> server_end) {
        // Create an instance of our InstanceImpl that destroys itself when the connection closes.
        new InstanceImpl(dispatcher, std::move(server_end));
      });
  if (result.is_error()) {
    FX_LOGS(ERROR) << "Failed to add Instance protocol: " << result.status_string();
    return -1;
  }

  // Everything is wired up. Sit back and run the loop until an incoming connection wakes us up.
  FX_LOGS(INFO) << "Listening for incoming connections";
  loop.Run();
  return 0;
}

HLCPP

用戶端

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <lib/async-loop/cpp/loop.h>
#include <lib/sys/cpp/component_context.h>
#include <lib/syslog/cpp/macros.h>
#include <unistd.h>

#include <charconv>

#include <examples/canvas/baseline/cpp/fidl.h>
#include <examples/fidl/new/canvas/baseline/hlcpp/client/config.h>

// A helper function that takes a coordinate in string form, like "123,-456", and parses it into a
// a struct of the form |{ in64 x; int64 y; }|.
::examples::canvas::baseline::Point ParsePoint(std::string_view input) {
  int64_t x = 0;
  int64_t y = 0;
  size_t index = input.find(',');
  if (index != std::string::npos) {
    std::from_chars(input.data(), input.data() + index, x);
    std::from_chars(input.data() + index + 1, input.data() + input.length(), y);
  }
  return ::examples::canvas::baseline::Point{.x = x, .y = y};
}

using Line = ::std::array<::examples::canvas::baseline::Point, 2>;

// A helper function that takes a coordinate pair in string form, like "1,2:-3,-4", and parses it
// into an array of 2 |Point| structs.
Line ParseLine(const std::string& action) {
  auto input = std::string_view(action);
  size_t index = input.find(':');
  if (index != std::string::npos) {
    return {ParsePoint(input.substr(0, index)), ParsePoint(input.substr(index + 1))};
  }
  return {};
}

int main(int argc, const char** argv) {
  FX_LOGS(INFO) << "Started";

  // Retrieve component configuration.
  auto conf = config::Config::TakeFromStartupHandle();

  // Start up an async loop.
  async::Loop loop(&kAsyncLoopConfigNeverAttachToThread);
  async_dispatcher_t* dispatcher = loop.dispatcher();

  // Connect to the protocol inside the component's namespace, then create an asynchronous client
  // using the newly-established connection.
  examples::canvas::baseline::InstancePtr instance_proxy;
  auto context = sys::ComponentContext::Create();
  context->svc()->Connect(instance_proxy.NewRequest(dispatcher));
  FX_LOGS(INFO) << "Outgoing connection enabled";

  instance_proxy.set_error_handler([&loop](zx_status_t status) {
    FX_LOGS(ERROR) << "Shutdown unexpectedly";
    loop.Quit();
  });

  // Provide a lambda to handle incoming |OnDrawn| events asynchronously.
  instance_proxy.events().OnDrawn = [&loop](::examples::canvas::baseline::Point top_left,
                                            ::examples::canvas::baseline::Point bottom_right) {
    FX_LOGS(INFO) << "OnDrawn event received: top_left: Point { x: " << top_left.x
                  << ", y: " << top_left.y << " }, bottom_right: Point { x: " << bottom_right.x
                  << ", y: " << bottom_right.y << " }";
    loop.Quit();
  };

  instance_proxy.events().handle_unknown_event = [](uint64_t ordinal) {
    FX_LOGS(WARNING) << "Received an unknown event with ordinal " << ordinal;
  };

  for (const auto& action : conf.script()) {
    // If the next action in the script is to "WAIT", block until an |OnDrawn| event is received
    // from the server.
    if (action == "WAIT") {
      loop.Run();
      loop.ResetQuit();
      continue;
    }

    // Draw a line to the canvas by calling the server, using the two points we just parsed
    // above as arguments.
    Line line = ParseLine(action);
    instance_proxy->AddLine(line);
    FX_LOGS(INFO) << "AddLine request sent: [Point { x: " << line[1].x << ", y: " << line[1].y
                  << " }, Point { x: " << line[0].x << ", y: " << line[0].y << " }]";
  }

  // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the
  // referenced bug has been resolved, we can remove the sleep.
  sleep(2);
  return 0;
}

伺服器

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <lib/async-loop/cpp/loop.h>
#include <lib/async-loop/default.h>
#include <lib/async/cpp/task.h>
#include <lib/fidl/cpp/binding.h>
#include <lib/sys/cpp/component_context.h>
#include <lib/syslog/cpp/macros.h>
#include <unistd.h>

#include <examples/canvas/baseline/cpp/fidl.h>
#include <src/lib/fxl/macros.h>
#include <src/lib/fxl/memory/weak_ptr.h>

// A struct that stores the two things we care about for this example: the set of lines, and the
// bounding box that contains them.
struct CanvasState {
  // Tracks whether there has been a change since the last send, to prevent redundant updates.
  bool changed = true;
  examples::canvas::baseline::BoundingBox bounding_box;
};

using Line = ::std::array<::examples::canvas::baseline::Point, 2>;

// An implementation of the |Instance| protocol.
class InstanceImpl final : public examples::canvas::baseline::Instance {
 public:
  // Bind this implementation to an |InterfaceRequest|.
  InstanceImpl(async_dispatcher_t* dispatcher,
               fidl::InterfaceRequest<examples::canvas::baseline::Instance> request)
      : binding_(fidl::Binding<examples::canvas::baseline::Instance>(this)), weak_factory_(this) {
    binding_.Bind(std::move(request), dispatcher);

    // Gracefully handle abrupt shutdowns.
    binding_.set_error_handler([this](zx_status_t status) mutable {
      if (status != ZX_ERR_PEER_CLOSED) {
        FX_LOGS(ERROR) << "Shutdown unexpectedly";
      }
      delete this;
    });

    // Start the update timer on startup. Our server sends one update per second.
    ScheduleOnDrawnEvent(dispatcher, zx::sec(1));
  }

  void AddLine(Line line) override {
    FX_LOGS(INFO) << "AddLine request received: [Point { x: " << line[1].x << ", y: " << line[1].y
                  << " }, Point { x: " << line[0].x << ", y: " << line[0].y << " }]";

    // Update the bounding box to account for the new line we've just "added" to the canvas.
    auto& bounds = state_.bounding_box;
    for (const auto& point : line) {
      if (point.x < bounds.top_left.x) {
        bounds.top_left.x = point.x;
      }
      if (point.y > bounds.top_left.y) {
        bounds.top_left.y = point.y;
      }
      if (point.x > bounds.bottom_right.x) {
        bounds.bottom_right.x = point.x;
      }
      if (point.y < bounds.bottom_right.y) {
        bounds.bottom_right.y = point.y;
      }
    }

    // Mark the state as "dirty", so that an update is sent back to the client on the next |OnDrawn|
    // event.
    state_.changed = true;
  }

  void handle_unknown_method(uint64_t ordinal, bool method_has_response) override {
    FX_LOGS(WARNING) << "Received an unknown method with ordinal " << ordinal;
  }

 private:
  // Each scheduled update waits for the allotted amount of time, sends an update if something has
  // changed, and schedules the next update.
  void ScheduleOnDrawnEvent(async_dispatcher_t* dispatcher, zx::duration after) {
    async::PostDelayedTask(
        dispatcher,
        [&, dispatcher, after, weak = weak_factory_.GetWeakPtr()] {
          // Halt execution if the binding has been deallocated already.
          if (!weak) {
            return;
          }

          // Schedule the next update if the binding still exists.
          weak->ScheduleOnDrawnEvent(dispatcher, after);

          // No need to send an update if nothing has changed since the last one.
          if (!weak->state_.changed) {
            return;
          }

          // This is where we would draw the actual lines. Since this is just an example, we'll
          // avoid doing the actual rendering, and simply send the bounding box to the client
          // instead.
          auto top_left = state_.bounding_box.top_left;
          auto bottom_right = state_.bounding_box.bottom_right;
          binding_.events().OnDrawn(top_left, bottom_right);
          FX_LOGS(INFO) << "OnDrawn event sent: top_left: Point { x: " << top_left.x
                        << ", y: " << top_left.y
                        << " }, bottom_right: Point { x: " << bottom_right.x
                        << ", y: " << bottom_right.y << " }";

          // Reset the change tracker.
          state_.changed = false;
        },
        after);
  }

  fidl::Binding<examples::canvas::baseline::Instance> binding_;
  CanvasState state_ = CanvasState{};

  // Generates weak references to this object, which are appropriate to pass into asynchronous
  // callbacks that need to access this object. The references are automatically invalidated
  // if this object is destroyed.
  fxl::WeakPtrFactory<InstanceImpl> weak_factory_;
};

int main(int argc, char** argv) {
  FX_LOGS(INFO) << "Started";

  // The event loop is used to asynchronously listen for incoming connections and requests from the
  // client. The following initializes the loop, and obtains the dispatcher, which will be used when
  // binding the server implementation to a channel.
  //
  // Note that unlike the new C++ bindings, HLCPP bindings rely on the async loop being attached to
  // the current thread via the |kAsyncLoopConfigAttachToCurrentThread| configuration.
  async::Loop loop(&kAsyncLoopConfigAttachToCurrentThread);
  async_dispatcher_t* dispatcher = loop.dispatcher();

  // Create an |OutgoingDirectory| instance.
  //
  // The |component::OutgoingDirectory| class serves the outgoing directory for our component.
  // This directory is where the outgoing FIDL protocols are installed so that they can be
  // provided to other components.
  auto context = sys::ComponentContext::CreateAndServeOutgoingDirectory();

  // Register a handler for components trying to connect to |examples.canvas.baseline.Instance|.
  context->outgoing()->AddPublicService(
      fidl::InterfaceRequestHandler<examples::canvas::baseline::Instance>(
          [dispatcher](fidl::InterfaceRequest<examples::canvas::baseline::Instance> request) {
            // Create an instance of our |InstanceImpl| that destroys itself when the connection
            // closes.
            new InstanceImpl(dispatcher, std::move(request));
          }));

  // Everything is wired up. Sit back and run the loop until an incoming connection wakes us up.
  FX_LOGS(INFO) << "Listening for incoming connections";
  loop.Run();
  return 0;
}

改善設計

以下各節將探索一種可能的疊代方法 原始設計。每個學習路徑都不必依序建構 的論述獨立方式, 遭到修改或改良

用戶端要求的基本計量方式

傳送非計量付費的單向呼叫會產生簡單的設計,不過 請留意,如果伺服器處理速度慢慢許多 該怎麼辦?舉例來說,用戶端可能會載入繪圖 是由文字檔中的數萬行所組成,試著傳送 依循順序如何減輕客戶壓力,避免 伺服器不堪負荷嗎?

使用確認模式,並透過單向呼叫 AddLine(...); 然後AddLine(...) -> ();向客戶提供意見 這樣用戶端就能視需要節流輸出內容。在本 例如,用戶端等待回應後,再傳送下一個 訊息等候,但較複雜的設計仍可傳送訊息 而且只在他們更不常收到非同步 AAR 時,才進行節流 比預期中許多

首先,我們必須定義介面定義並測試控管工具。FIDL CML 和領域介面定義會設定一個 Scaffold 導入方式可以使用:

FIDL

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
library examples.canvas.addlinemetered;

/// A point in 2D space.
type Point = struct {
    x int64;
    y int64;
};

/// A line in 2D space.
alias Line = array<Point, 2>;

/// A bounding box in 2D space. This is the result of "drawing" operations on our canvas, and what
/// the server reports back to the client. These bounds are sufficient to contain all of the
/// lines (inclusive) on a canvas at a given time.
type BoundingBox = struct {
    top_left Point;
    bottom_right Point;
};

/// Manages a single instance of a canvas. Each session of this protocol is responsible for a new
/// canvas.
@discoverable
open protocol Instance {
    /// Add a line to the canvas.
    ///
    /// This method can be considered an improvement over the one-way case from a flow control
    /// perspective, as it is now much more difficult for a well-behaved client to "get ahead" of
    /// the server and overwhelm. This is because the client now waits for each request to be acked
    /// by the server before proceeding. This change represents a trade-off: we get much greater
    /// synchronization of message flow between the client and the server, at the cost of worse
    /// performance at the limit due to the extra wait imposed by each ack.
    flexible AddLine(struct {
        line Line;
    }) -> ();

    /// Update the client with the latest drawing state. The server makes no guarantees about how
    /// often this event occurs - it could occur multiple times per board state, for example.
    flexible -> OnDrawn(BoundingBox);
};

CML

用戶端

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
{
    include: [ "syslog/client.shard.cml" ],
    program: {
        runner: "elf",
        binary: "bin/client_bin",
    },
    use: [
        { protocol: "examples.canvas.addlinemetered.Instance" },
    ],
    config: {
        // A script for the client to follow. Entries in the script may take one of two forms: a
        // pair of signed-integer coordinates like "-2,15:4,5", or the string "WAIT". The former
        // calls `AddLine(...)`, while the latter pauses execution until the next `->OnDrawn(...)`
        // event is received.
        //
        // TODO(https://fxbug.dev/42178362): It would absolve individual language implementations of a great
        //   deal of string parsing if we were able to use a vector of `union { Point; WaitEnum}`
        //   here.
        script: {
            type: "vector",
            max_count: 100,
            element: {
                type: "string",
                max_size: 64,
            },
        },
    },
}

伺服器

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
{
    include: [ "syslog/client.shard.cml" ],
    program: {
        runner: "elf",
        binary: "bin/server_bin",
    },
    capabilities: [
        { protocol: "examples.canvas.addlinemetered.Instance" },
    ],
    expose: [
        {
            protocol: "examples.canvas.addlinemetered.Instance",
            from: "self",
        },
    ],
}

領域

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
{
    children: [
        {
            name: "client",
            url: "#meta/client.cm",
        },
        {
            name: "server",
            url: "#meta/server.cm",
        },
    ],
    offer: [
        // Route the protocol under test from the server to the client.
        {
            protocol: "examples.canvas.addlinemetered.Instance",
            from: "#server",
            to: "#client",
        },

        // Route diagnostics support to all children.
        {
            protocol: [
                "fuchsia.inspect.InspectSink",
                "fuchsia.logger.LogSink",
            ],
            from: "parent",
            to: [
                "#client",
                "#server",
            ],
        },
    ],
}

用戶端和伺服器實作項目現在可以使用任何支援的語言編寫:

荒漠油廠

用戶端

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use anyhow::{format_err, Context as _, Error};
use config::Config;
use fidl_examples_canvas_addlinemetered::{InstanceEvent, InstanceMarker, Point};
use fuchsia_component::client::connect_to_protocol;
use futures::TryStreamExt;
use std::{thread, time};

#[fuchsia::main]
async fn main() -> Result<(), Error> {
    println!("Started");

    // Load the structured config values passed to this component at startup.
    let config = Config::take_from_startup_handle();

    // Use the Component Framework runtime to connect to the newly spun up server component. We wrap
    // our retained client end in a proxy object that lets us asynchronously send Instance requests
    // across the channel.
    let instance = connect_to_protocol::<InstanceMarker>()?;
    println!("Outgoing connection enabled");

    for action in config.script.into_iter() {
        // If the next action in the script is to "WAIT", block until an OnDrawn event is received
        // from the server.
        if action == "WAIT" {
            let mut event_stream = instance.take_event_stream();
            loop {
                match event_stream
                    .try_next()
                    .await
                    .context("Error getting event response from proxy")?
                    .ok_or_else(|| format_err!("Proxy sent no events"))?
                {
                    InstanceEvent::OnDrawn { top_left, bottom_right } => {
                        println!(
                            "OnDrawn event received: top_left: {:?}, bottom_right: {:?}",
                            top_left, bottom_right
                        );
                        break;
                    }
                    InstanceEvent::_UnknownEvent { ordinal, .. } => {
                        println!("Received an unknown event with ordinal {ordinal}");
                    }
                }
            }
            continue;
        }

        // If the action is not a "WAIT", we need to draw a line instead. Parse the string input,
        // making two points out of it.
        let mut points = action
            .split(":")
            .map(|point| {
                let integers = point
                    .split(",")
                    .map(|integer| integer.parse::<i64>().unwrap())
                    .collect::<Vec<i64>>();
                Point { x: integers[0], y: integers[1] }
            })
            .collect::<Vec<Point>>();

        // Assemble a line from the two points.
        let from = points.pop().ok_or(format_err!("line requires 2 points, but has 0"))?;
        let to = points.pop().ok_or(format_err!("line requires 2 points, but has 1"))?;
        let line = [from, to];

        // Draw a line to the canvas by calling the server, using the two points we just parsed
        // above as arguments.
        println!("AddLine request sent: {:?}", line);

        // By awaiting on the reply, we prevent the client from sending another request before the
        // server is ready to handle, thereby syncing the flow rate between the two parties over
        // this method.
        instance.add_line(&line).await.context("Error sending request")?;
        println!("AddLine response received");
    }

    // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the
    // referenced bug has been resolved, we can remove the sleep.
    thread::sleep(time::Duration::from_secs(2));
    Ok(())
}

伺服器

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use anyhow::{Context as _, Error};
use fidl::endpoints::RequestStream as _;
use fidl_examples_canvas_addlinemetered::{
    BoundingBox, InstanceRequest, InstanceRequestStream, Point,
};
use fuchsia_async::{Time, Timer};
use fuchsia_component::server::ServiceFs;
use fuchsia_zircon::{self as zx};
use futures::future::join;
use futures::prelude::*;
use std::sync::{Arc, Mutex};

// A struct that stores the two things we care about for this example: the bounding box the lines
// that have been added thus far, and bit to track whether or not there have been changes since the
// last `OnDrawn` event.
#[derive(Debug)]
struct CanvasState {
    // Tracks whether there has been a change since the last send, to prevent redundant updates.
    changed: bool,
    bounding_box: BoundingBox,
}

impl CanvasState {
    /// Handler for the `AddLine` method.
    fn add_line(&mut self, line: [Point; 2]) {
        // Update the bounding box to account for the new lines we've just "added" to the canvas.
        let bounds = &mut self.bounding_box;
        for point in line {
            if point.x < bounds.top_left.x {
                bounds.top_left.x = point.x;
            }
            if point.y > bounds.top_left.y {
                bounds.top_left.y = point.y;
            }
            if point.x > bounds.bottom_right.x {
                bounds.bottom_right.x = point.x;
            }
            if point.y < bounds.bottom_right.y {
                bounds.bottom_right.y = point.y;
            }
        }

        // Mark the state as "dirty", so that an update is sent back to the client on the next tick.
        self.changed = true
    }
}

/// Creates a new instance of the server, paired to a single client across a zircon channel.
async fn run_server(stream: InstanceRequestStream) -> Result<(), Error> {
    // Create a new in-memory state store for the state of the canvas. The store will live for the
    // lifetime of the connection between the server and this particular client.
    let state = Arc::new(Mutex::new(CanvasState {
        changed: true,
        bounding_box: BoundingBox {
            top_left: Point { x: 0, y: 0 },
            bottom_right: Point { x: 0, y: 0 },
        },
    }));

    // Take ownership of the control_handle from the stream, which will allow us to push events from
    // a different async task.
    let control_handle = stream.control_handle();

    // A separate watcher task periodically "draws" the canvas, and notifies the client of the new
    // state. We'll need a cloned reference to the canvas state to be accessible from the new
    // task.
    let state_ref = state.clone();
    let update_sender = || async move {
        loop {
            // Our server sends one update per second.
            Timer::new(Time::after(zx::Duration::from_seconds(1))).await;
            let mut state = state_ref.lock().unwrap();
            if !state.changed {
                continue;
            }

            // After acquiring the lock, this is where we would draw the actual lines. Since this is
            // just an example, we'll avoid doing the actual rendering, and simply send the bounding
            // box to the client instead.
            let bounds = state.bounding_box;
            match control_handle.send_on_drawn(&bounds.top_left, &bounds.bottom_right) {
                Ok(_) => println!(
                    "OnDrawn event sent: top_left: {:?}, bottom_right: {:?}",
                    bounds.top_left, bounds.bottom_right
                ),
                Err(_) => return,
            }

            // Reset the change tracker.
            state.changed = false
        }
    };

    // Handle requests on the protocol sequentially - a new request is not handled until its
    // predecessor has been processed.
    let state_ref = &state;
    let request_handler =
        stream.map(|result| result.context("failed request")).try_for_each(|request| async move {
            // Match based on the method being invoked.
            match request {
                InstanceRequest::AddLine { line, responder } => {
                    println!("AddLine request received: {:?}", line);
                    state_ref.lock().unwrap().add_line(line);

                    // Because this is now a two-way method, we must use the generated `responder`
                    // to send an in this case empty reply back to the client. This is the mechanic
                    // which syncs the flow rate between the client and server on this method,
                    // thereby preventing the client from "flooding" the server with unacknowledged
                    // work.
                    responder.send().context("Error responding")?;
                    println!("AddLine response sent");
                } //
                InstanceRequest::_UnknownMethod { ordinal, .. } => {
                    println!("Received an unknown method with ordinal {ordinal}");
                }
            }
            Ok(())
        });

    // This await does not complete, and thus the function does not return, unless the server errors
    // out. The stream will await indefinitely, thereby creating a long-lived server. Here, we first
    // wait for the updater task to realize the connection has died, then bubble up the error.
    join(request_handler, update_sender()).await.0
}

// A helper enum that allows us to treat a `Instance` service instance as a value.
enum IncomingService {
    Instance(InstanceRequestStream),
}

#[fuchsia::main]
async fn main() -> Result<(), Error> {
    println!("Started");

    // Add a discoverable instance of our `Instance` protocol - this will allow the client to see
    // the server and connect to it.
    let mut fs = ServiceFs::new_local();
    fs.dir("svc").add_fidl_service(IncomingService::Instance);
    fs.take_and_serve_directory_handle()?;
    println!("Listening for incoming connections");

    // The maximum number of concurrent clients that may be served by this process.
    const MAX_CONCURRENT: usize = 10;

    // Serve each connection simultaneously, up to the `MAX_CONCURRENT` limit.
    fs.for_each_concurrent(MAX_CONCURRENT, |IncomingService::Instance(stream)| {
        run_server(stream).unwrap_or_else(|e| println!("{:?}", e))
    })
    .await;

    Ok(())
}

C++ (自然)

用戶端

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <fidl/examples.canvas.addlinemetered/cpp/fidl.h>
#include <lib/async-loop/cpp/loop.h>
#include <lib/component/incoming/cpp/protocol.h>
#include <lib/syslog/cpp/macros.h>
#include <unistd.h>

#include <charconv>

#include <examples/fidl/new/canvas/add_line_metered/cpp_natural/client/config.h>

// The |EventHandler| is a derived class that we pass into the |fidl::WireClient| to handle incoming
// events asynchronously.
class EventHandler : public fidl::AsyncEventHandler<examples_canvas_addlinemetered::Instance> {
 public:
  // Handler for |OnDrawn| events sent from the server.
  void OnDrawn(fidl::Event<examples_canvas_addlinemetered::Instance::OnDrawn>& event) override {
    auto top_left = event.top_left();
    auto bottom_right = event.bottom_right();
    FX_LOGS(INFO) << "OnDrawn event received: top_left: Point { x: " << top_left.x()
                  << ", y: " << top_left.y() << " }, bottom_right: Point { x: " << bottom_right.x()
                  << ", y: " << bottom_right.y() << " }";
    loop_.Quit();
  }

  void on_fidl_error(fidl::UnbindInfo error) override { FX_LOGS(ERROR) << error; }

  void handle_unknown_event(
      fidl::UnknownEventMetadata<examples_canvas_addlinemetered::Instance> metadata) override {
    FX_LOGS(WARNING) << "Received an unknown event with ordinal " << metadata.event_ordinal;
  }

  explicit EventHandler(async::Loop& loop) : loop_(loop) {}

 private:
  async::Loop& loop_;
};

// A helper function that takes a coordinate in string form, like "123,-456", and parses it into a
// a struct of the form |{ in64 x; int64 y; }|.
::examples_canvas_addlinemetered::Point ParsePoint(std::string_view input) {
  int64_t x = 0;
  int64_t y = 0;
  size_t index = input.find(',');
  if (index != std::string::npos) {
    std::from_chars(input.data(), input.data() + index, x);
    std::from_chars(input.data() + index + 1, input.data() + input.length(), y);
  }
  return ::examples_canvas_addlinemetered::Point(x, y);
}

// A helper function that takes a coordinate pair in string form, like "1,2:-3,-4", and parses it
// into an array of 2 |Point| structs.
::std::array<::examples_canvas_addlinemetered::Point, 2> ParseLine(const std::string& action) {
  auto input = std::string_view(action);
  size_t index = input.find(':');
  if (index != std::string::npos) {
    return {ParsePoint(input.substr(0, index)), ParsePoint(input.substr(index + 1))};
  }
  return {};
}

int main(int argc, const char** argv) {
  FX_LOGS(INFO) << "Started";

  // Retrieve component configuration.
  auto conf = config::Config::TakeFromStartupHandle();

  // Start up an async loop and dispatcher.
  async::Loop loop(&kAsyncLoopConfigNeverAttachToThread);
  async_dispatcher_t* dispatcher = loop.dispatcher();

  // Connect to the protocol inside the component's namespace. This can fail so it's wrapped in a
  // |zx::result| and it must be checked for errors.
  zx::result client_end = component::Connect<examples_canvas_addlinemetered::Instance>();
  if (!client_end.is_ok()) {
    FX_LOGS(ERROR) << "Synchronous error when connecting to the |Instance| protocol: "
                   << client_end.status_string();
    return -1;
  }

  // Create an instance of the event handler.
  EventHandler event_handler(loop);

  // Create an asynchronous client using the newly-established connection.
  fidl::Client client(std::move(*client_end), dispatcher, &event_handler);
  FX_LOGS(INFO) << "Outgoing connection enabled";

  for (const auto& action : conf.script()) {
    // If the next action in the script is to "WAIT", block until an |OnDrawn| event is received
    // from the server.
    if (action == "WAIT") {
      loop.Run();
      loop.ResetQuit();
      continue;
    }

    // Draw a line to the canvas by calling the server, using the two points we just parsed
    // above as arguments.
    auto line = ParseLine(action);
    FX_LOGS(INFO) << "AddLine request sent: [Point { x: " << line[1].x() << ", y: " << line[1].y()
                  << " }, Point { x: " << line[0].x() << ", y: " << line[0].y() << " }]";

    client->AddLine(line).ThenExactlyOnce(
        [&](fidl::Result<examples_canvas_addlinemetered::Instance::AddLine>& result) {
          // Check if the FIDL call succeeded or not.
          if (!result.is_ok()) {
            // Check that our two-way call succeeded, and handle the error appropriately. In the
            // case of this example, there is nothing we can do to recover here, except to log an
            // error and exit the program.
            FX_LOGS(ERROR) << "Could not send AddLine request: "
                           << result.error_value().FormatDescription();
          }
          FX_LOGS(INFO) << "AddLine response received";

          // Quit the loop, thereby handing control back to the outer loop of actions being iterated
          // over.
          loop.Quit();
        });

    // Run the loop until the callback is resolved, at which point we can continue from here.
    loop.Run();
    loop.ResetQuit();
  }

  // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the
  // referenced bug has been resolved, we can remove the sleep.
  sleep(2);
  return 0;
}

伺服器

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <fidl/examples.canvas.addlinemetered/cpp/fidl.h>
#include <lib/async-loop/cpp/loop.h>
#include <lib/async/cpp/task.h>
#include <lib/component/outgoing/cpp/outgoing_directory.h>
#include <lib/fidl/cpp/wire/channel.h>
#include <lib/syslog/cpp/macros.h>
#include <unistd.h>

#include <src/lib/fxl/macros.h>
#include <src/lib/fxl/memory/weak_ptr.h>

// A struct that stores the two things we care about for this example: the set of lines, and the
// bounding box that contains them.
struct CanvasState {
  // Tracks whether there has been a change since the last send, to prevent redundant updates.
  bool changed = true;
  examples_canvas_addlinemetered::BoundingBox bounding_box;
};

// An implementation of the |Instance| protocol.
class InstanceImpl final : public fidl::Server<examples_canvas_addlinemetered::Instance> {
 public:
  // Bind this implementation to a channel.
  InstanceImpl(async_dispatcher_t* dispatcher,
               fidl::ServerEnd<examples_canvas_addlinemetered::Instance> server_end)
      : binding_(fidl::BindServer(
            dispatcher, std::move(server_end), this,
            [this](InstanceImpl* impl, fidl::UnbindInfo info,
                   fidl::ServerEnd<examples_canvas_addlinemetered::Instance> server_end) {
              if (info.reason() != ::fidl::Reason::kPeerClosedWhileReading) {
                FX_LOGS(ERROR) << "Shutdown unexpectedly";
              }
              delete this;
            })),
        weak_factory_(this) {
    // Start the update timer on startup. Our server sends one update per second
    ScheduleOnDrawnEvent(dispatcher, zx::sec(1));
  }

  void AddLine(AddLineRequest& request, AddLineCompleter::Sync& completer) override {
    auto points = request.line();
    FX_LOGS(INFO) << "AddLine request received: [Point { x: " << points[1].x()
                  << ", y: " << points[1].y() << " }, Point { x: " << points[0].x()
                  << ", y: " << points[0].y() << " }]";

    // Update the bounding box to account for the new line we've just "added" to the canvas.
    auto& bounds = state_.bounding_box;
    for (const auto& point : request.line()) {
      if (point.x() < bounds.top_left().x()) {
        bounds.top_left().x() = point.x();
      }
      if (point.y() > bounds.top_left().y()) {
        bounds.top_left().y() = point.y();
      }
      if (point.x() > bounds.bottom_right().x()) {
        bounds.bottom_right().x() = point.x();
      }
      if (point.y() < bounds.bottom_right().y()) {
        bounds.bottom_right().y() = point.y();
      }
    }

    // Mark the state as "dirty", so that an update is sent back to the client on the next |OnDrawn|
    // event.
    state_.changed = true;

    // Because this is now a two-way method, we must use the generated |completer| to send an in
    // this case empty reply back to the client. This is the mechanic which syncs the flow rate
    // between the client and server on this method, thereby preventing the client from "flooding"
    // the server with unacknowledged work.
    completer.Reply();
    FX_LOGS(INFO) << "AddLine response sent";
  }

  void handle_unknown_method(
      fidl::UnknownMethodMetadata<examples_canvas_addlinemetered::Instance> metadata,
      fidl::UnknownMethodCompleter::Sync& completer) override {
    FX_LOGS(WARNING) << "Received an unknown method with ordinal " << metadata.method_ordinal;
  }

 private:
  // Each scheduled update waits for the allotted amount of time, sends an update if something has
  // changed, and schedules the next update.
  void ScheduleOnDrawnEvent(async_dispatcher_t* dispatcher, zx::duration after) {
    async::PostDelayedTask(
        dispatcher,
        [&, dispatcher, after, weak = weak_factory_.GetWeakPtr()] {
          // Halt execution if the binding has been deallocated already.
          if (!weak) {
            return;
          }

          // Schedule the next update if the binding still exists.
          weak->ScheduleOnDrawnEvent(dispatcher, after);

          // No need to send an update if nothing has changed since the last one.
          if (!weak->state_.changed) {
            return;
          }

          // This is where we would draw the actual lines. Since this is just an example, we'll
          // avoid doing the actual rendering, and simply send the bounding box to the client
          // instead.
          auto result = fidl::SendEvent(binding_)->OnDrawn(state_.bounding_box);
          if (!result.is_ok()) {
            return;
          }

          auto top_left = state_.bounding_box.top_left();
          auto bottom_right = state_.bounding_box.bottom_right();
          FX_LOGS(INFO) << "OnDrawn event sent: top_left: Point { x: " << top_left.x()
                        << ", y: " << top_left.y()
                        << " }, bottom_right: Point { x: " << bottom_right.x()
                        << ", y: " << bottom_right.y() << " }";

          // Reset the change tracker.
          state_.changed = false;
        },
        after);
  }

  fidl::ServerBindingRef<examples_canvas_addlinemetered::Instance> binding_;
  CanvasState state_ = CanvasState{};

  // Generates weak references to this object, which are appropriate to pass into asynchronous
  // callbacks that need to access this object. The references are automatically invalidated
  // if this object is destroyed.
  fxl::WeakPtrFactory<InstanceImpl> weak_factory_;
};

int main(int argc, char** argv) {
  FX_LOGS(INFO) << "Started";

  // The event loop is used to asynchronously listen for incoming connections and requests from the
  // client. The following initializes the loop, and obtains the dispatcher, which will be used when
  // binding the server implementation to a channel.
  async::Loop loop(&kAsyncLoopConfigNeverAttachToThread);
  async_dispatcher_t* dispatcher = loop.dispatcher();

  // Create an |OutgoingDirectory| instance.
  //
  // The |component::OutgoingDirectory| class serves the outgoing directory for our component. This
  // directory is where the outgoing FIDL protocols are installed so that they can be provided to
  // other components.
  component::OutgoingDirectory outgoing = component::OutgoingDirectory(dispatcher);

  // The `ServeFromStartupInfo()` function sets up the outgoing directory with the startup handle.
  // The startup handle is a handle provided to every component by the system, so that they can
  // serve capabilities (e.g. FIDL protocols) to other components.
  zx::result result = outgoing.ServeFromStartupInfo();
  if (result.is_error()) {
    FX_LOGS(ERROR) << "Failed to serve outgoing directory: " << result.status_string();
    return -1;
  }

  // Register a handler for components trying to connect to
  // |examples.canvas.addlinemetered.Instance|.
  result = outgoing.AddUnmanagedProtocol<examples_canvas_addlinemetered::Instance>(
      [dispatcher](fidl::ServerEnd<examples_canvas_addlinemetered::Instance> server_end) {
        // Create an instance of our InstanceImpl that destroys itself when the connection closes.
        new InstanceImpl(dispatcher, std::move(server_end));
      });
  if (result.is_error()) {
    FX_LOGS(ERROR) << "Failed to add Instance protocol: " << result.status_string();
    return -1;
  }

  // Everything is wired up. Sit back and run the loop until an incoming connection wakes us up.
  FX_LOGS(INFO) << "Listening for incoming connections";
  loop.Run();
  return 0;
}

C++ (有線)

用戶端

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <fidl/examples.canvas.addlinemetered/cpp/wire.h>
#include <lib/async-loop/cpp/loop.h>
#include <lib/component/incoming/cpp/protocol.h>
#include <lib/syslog/cpp/macros.h>
#include <unistd.h>

#include <charconv>

#include <examples/fidl/new/canvas/add_line_metered/cpp_wire/client/config.h>

// The |EventHandler| is a derived class that we pass into the |fidl::WireClient| to handle incoming
// events asynchronously.
class EventHandler : public fidl::WireAsyncEventHandler<examples_canvas_addlinemetered::Instance> {
 public:
  // Handler for |OnDrawn| events sent from the server.
  void OnDrawn(fidl::WireEvent<examples_canvas_addlinemetered::Instance::OnDrawn>* event) override {
    auto top_left = event->top_left;
    auto bottom_right = event->bottom_right;
    FX_LOGS(INFO) << "OnDrawn event received: top_left: Point { x: " << top_left.x
                  << ", y: " << top_left.y << " }, bottom_right: Point { x: " << bottom_right.x
                  << ", y: " << bottom_right.y << " }";
    loop_.Quit();
  }

  void on_fidl_error(fidl::UnbindInfo error) override { FX_LOGS(ERROR) << error; }

  void handle_unknown_event(
      fidl::UnknownEventMetadata<examples_canvas_addlinemetered::Instance> metadata) override {
    FX_LOGS(WARNING) << "Received an unknown event with ordinal " << metadata.event_ordinal;
  }

  explicit EventHandler(async::Loop& loop) : loop_(loop) {}

 private:
  async::Loop& loop_;
};

// A helper function that takes a coordinate in string form, like "123,-456", and parses it into a
// a struct of the form |{ in64 x; int64 y; }|.
::examples_canvas_addlinemetered::wire::Point ParsePoint(std::string_view input) {
  int64_t x = 0;
  int64_t y = 0;
  size_t index = input.find(',');
  if (index != std::string::npos) {
    std::from_chars(input.data(), input.data() + index, x);
    std::from_chars(input.data() + index + 1, input.data() + input.length(), y);
  }
  return ::examples_canvas_addlinemetered::wire::Point{.x = x, .y = y};
}

// A helper function that takes a coordinate pair in string form, like "1,2:-3,-4", and parses it
// into an array of 2 |Point| structs.
::fidl::Array<::examples_canvas_addlinemetered::wire::Point, 2> ParseLine(
    const std::string& action) {
  auto input = std::string_view(action);
  size_t index = input.find(':');
  if (index != std::string::npos) {
    return {ParsePoint(input.substr(0, index)), ParsePoint(input.substr(index + 1))};
  }
  return {};
}

int main(int argc, const char** argv) {
  FX_LOGS(INFO) << "Started";

  // Retrieve component configuration.
  auto conf = config::Config::TakeFromStartupHandle();

  // Start up an async loop and dispatcher.
  async::Loop loop(&kAsyncLoopConfigNeverAttachToThread);
  async_dispatcher_t* dispatcher = loop.dispatcher();

  // Connect to the protocol inside the component's namespace. This can fail so it's wrapped in a
  // |zx::result| and it must be checked for errors.
  zx::result client_end = component::Connect<examples_canvas_addlinemetered::Instance>();
  if (!client_end.is_ok()) {
    FX_LOGS(ERROR) << "Synchronous error when connecting to the |Instance| protocol: "
                   << client_end.status_string();
    return -1;
  }

  // Create an instance of the event handler.
  EventHandler event_handler(loop);

  // Create an asynchronous client using the newly-established connection.
  fidl::WireClient client(std::move(*client_end), dispatcher, &event_handler);
  FX_LOGS(INFO) << "Outgoing connection enabled";

  for (const auto& action : conf.script()) {
    // If the next action in the script is to "WAIT", block until an |OnDrawn| event is received
    // from the server.
    if (action == "WAIT") {
      loop.Run();
      loop.ResetQuit();
      continue;
    }

    // Draw a line to the canvas by calling the server, using the two points we just parsed
    // above as arguments.
    auto line = ParseLine(action);
    FX_LOGS(INFO) << "AddLine request sent: [Point { x: " << line[1].x << ", y: " << line[1].y
                  << " }, Point { x: " << line[0].x << ", y: " << line[0].y << " }]";

    client->AddLine(line).ThenExactlyOnce(
        [&](fidl::WireUnownedResult<examples_canvas_addlinemetered::Instance::AddLine>& result) {
          // Check if the FIDL call succeeded or not.
          if (!result.ok()) {
            // Check that our two-way call succeeded, and handle the error appropriately. In the
            // case of this example, there is nothing we can do to recover here, except to log an
            // error and exit the program.
            FX_LOGS(ERROR) << "Could not send AddLine request: " << result.status_string();
          }
          FX_LOGS(INFO) << "AddLine response received";

          // Quit the loop, thereby handing control back to the outer loop of actions being iterated
          // over.
          loop.Quit();
        });

    // Run the loop until the callback is resolved, at which point we can continue from here.
    loop.Run();
    loop.ResetQuit();
  }

  // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the
  // referenced bug has been resolved, we can remove the sleep.
  sleep(2);
  return 0;
}

伺服器

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <fidl/examples.canvas.addlinemetered/cpp/wire.h>
#include <lib/async-loop/cpp/loop.h>
#include <lib/async/cpp/task.h>
#include <lib/component/outgoing/cpp/outgoing_directory.h>
#include <lib/fidl/cpp/wire/channel.h>
#include <lib/syslog/cpp/macros.h>
#include <unistd.h>

#include <src/lib/fxl/macros.h>
#include <src/lib/fxl/memory/weak_ptr.h>

// A struct that stores the two things we care about for this example: the set of lines, and the
// bounding box that contains them.
struct CanvasState {
  // Tracks whether there has been a change since the last send, to prevent redundant updates.
  bool changed = true;
  examples_canvas_addlinemetered::wire::BoundingBox bounding_box;
};

// An implementation of the |Instance| protocol.
class InstanceImpl final : public fidl::WireServer<examples_canvas_addlinemetered::Instance> {
 public:
  // Bind this implementation to a channel.
  InstanceImpl(async_dispatcher_t* dispatcher,
               fidl::ServerEnd<examples_canvas_addlinemetered::Instance> server_end)
      : binding_(fidl::BindServer(
            dispatcher, std::move(server_end), this,
            [this](InstanceImpl* impl, fidl::UnbindInfo info,
                   fidl::ServerEnd<examples_canvas_addlinemetered::Instance> server_end) {
              if (info.reason() != ::fidl::Reason::kPeerClosedWhileReading) {
                FX_LOGS(ERROR) << "Shutdown unexpectedly";
              }
              delete this;
            })),
        weak_factory_(this) {
    // Start the update timer on startup. Our server sends one update per second
    ScheduleOnDrawnEvent(dispatcher, zx::sec(1));
  }

  void AddLine(AddLineRequestView request, AddLineCompleter::Sync& completer) override {
    auto points = request->line;
    FX_LOGS(INFO) << "AddLine request received: [Point { x: " << points[1].x
                  << ", y: " << points[1].y << " }, Point { x: " << points[0].x
                  << ", y: " << points[0].y << " }]";

    // Update the bounding box to account for the new line we've just "added" to the canvas.
    auto& bounds = state_.bounding_box;
    for (const auto& point : request->line) {
      if (point.x < bounds.top_left.x) {
        bounds.top_left.x = point.x;
      }
      if (point.y > bounds.top_left.y) {
        bounds.top_left.y = point.y;
      }
      if (point.x > bounds.bottom_right.x) {
        bounds.bottom_right.x = point.x;
      }
      if (point.y < bounds.bottom_right.y) {
        bounds.bottom_right.y = point.y;
      }
    }

    // Mark the state as "dirty", so that an update is sent back to the client on the next |OnDrawn|
    // event.
    state_.changed = true;

    // Because this is now a two-way method, we must use the generated |completer| to send an in
    // this case empty reply back to the client. This is the mechanic which syncs the flow rate
    // between the client and server on this method, thereby preventing the client from "flooding"
    // the server with unacknowledged work.
    completer.Reply();
    FX_LOGS(INFO) << "AddLine response sent";
  }

  void handle_unknown_method(
      fidl::UnknownMethodMetadata<examples_canvas_addlinemetered::Instance> metadata,
      fidl::UnknownMethodCompleter::Sync& completer) override {
    FX_LOGS(WARNING) << "Received an unknown method with ordinal " << metadata.method_ordinal;
  }

 private:
  // Each scheduled update waits for the allotted amount of time, sends an update if something has
  // changed, and schedules the next update.
  void ScheduleOnDrawnEvent(async_dispatcher_t* dispatcher, zx::duration after) {
    async::PostDelayedTask(
        dispatcher,
        [&, dispatcher, after, weak = weak_factory_.GetWeakPtr()] {
          // Halt execution if the binding has been deallocated already.
          if (!weak) {
            return;
          }

          // Schedule the next update if the binding still exists.
          weak->ScheduleOnDrawnEvent(dispatcher, after);

          // No need to send an update if nothing has changed since the last one.
          if (!weak->state_.changed) {
            return;
          }

          // This is where we would draw the actual lines. Since this is just an example, we'll
          // avoid doing the actual rendering, and simply send the bounding box to the client
          // instead.
          auto top_left = weak->state_.bounding_box.top_left;
          auto bottom_right = weak->state_.bounding_box.bottom_right;
          fidl::Status status =
              fidl::WireSendEvent(weak->binding_)->OnDrawn(top_left, bottom_right);
          if (!status.ok()) {
            return;
          }
          FX_LOGS(INFO) << "OnDrawn event sent: top_left: Point { x: " << top_left.x
                        << ", y: " << top_left.y
                        << " }, bottom_right: Point { x: " << bottom_right.x
                        << ", y: " << bottom_right.y << " }";

          // Reset the change tracker.
          weak->state_.changed = false;
        },
        after);
  }

  fidl::ServerBindingRef<examples_canvas_addlinemetered::Instance> binding_;
  CanvasState state_ = CanvasState{};

  // Generates weak references to this object, which are appropriate to pass into asynchronous
  // callbacks that need to access this object. The references are automatically invalidated
  // if this object is destroyed.
  fxl::WeakPtrFactory<InstanceImpl> weak_factory_;
};

int main(int argc, char** argv) {
  FX_LOGS(INFO) << "Started";

  // The event loop is used to asynchronously listen for incoming connections and requests from the
  // client. The following initializes the loop, and obtains the dispatcher, which will be used when
  // binding the server implementation to a channel.
  async::Loop loop(&kAsyncLoopConfigNeverAttachToThread);
  async_dispatcher_t* dispatcher = loop.dispatcher();

  // Create an |OutgoingDirectory| instance.
  //
  // The |component::OutgoingDirectory| class serves the outgoing directory for our component. This
  // directory is where the outgoing FIDL protocols are installed so that they can be provided to
  // other components.
  component::OutgoingDirectory outgoing = component::OutgoingDirectory(dispatcher);

  // The `ServeFromStartupInfo()` function sets up the outgoing directory with the startup handle.
  // The startup handle is a handle provided to every component by the system, so that they can
  // serve capabilities (e.g. FIDL protocols) to other components.
  zx::result result = outgoing.ServeFromStartupInfo();
  if (result.is_error()) {
    FX_LOGS(ERROR) << "Failed to serve outgoing directory: " << result.status_string();
    return -1;
  }

  // Register a handler for components trying to connect to
  // |examples.canvas.addlinemetered.Instance|.
  result = outgoing.AddUnmanagedProtocol<examples_canvas_addlinemetered::Instance>(
      [dispatcher](fidl::ServerEnd<examples_canvas_addlinemetered::Instance> server_end) {
        // Create an instance of our InstanceImpl that destroys itself when the connection closes.
        new InstanceImpl(dispatcher, std::move(server_end));
      });
  if (result.is_error()) {
    FX_LOGS(ERROR) << "Failed to add Instance protocol: " << result.status_string();
    return -1;
  }

  // Everything is wired up. Sit back and run the loop until an incoming connection wakes us up.
  FX_LOGS(INFO) << "Listening for incoming connections";
  loop.Run();
  return 0;
}

HLCPP

用戶端

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <lib/async-loop/cpp/loop.h>
#include <lib/sys/cpp/component_context.h>
#include <lib/syslog/cpp/macros.h>
#include <unistd.h>

#include <charconv>

#include <examples/canvas/addlinemetered/cpp/fidl.h>
#include <examples/fidl/new/canvas/add_line_metered/hlcpp/client/config.h>

#include "lib/fpromise/result.h"

// A helper function that takes a coordinate in string form, like "123,-456", and parses it into a
// a struct of the form |{ in64 x; int64 y; }|.
::examples::canvas::addlinemetered::Point ParsePoint(std::string_view input) {
  int64_t x = 0;
  int64_t y = 0;
  size_t index = input.find(',');
  if (index != std::string::npos) {
    std::from_chars(input.data(), input.data() + index, x);
    std::from_chars(input.data() + index + 1, input.data() + input.length(), y);
  }
  return ::examples::canvas::addlinemetered::Point{.x = x, .y = y};
}

// A helper function that takes a coordinate pair in string form, like "1,2:-3,-4", and parses it
// into an array of 2 |Point| structs.
::std::array<::examples::canvas::addlinemetered::Point, 2> ParseLine(const std::string& action) {
  auto input = std::string_view(action);
  size_t index = input.find(':');
  if (index != std::string::npos) {
    return {ParsePoint(input.substr(0, index)), ParsePoint(input.substr(index + 1))};
  }
  return {};
}

int main(int argc, const char** argv) {
  FX_LOGS(INFO) << "Started";

  // Retrieve component configuration.
  auto conf = config::Config::TakeFromStartupHandle();

  // Start up an async loop.
  async::Loop loop(&kAsyncLoopConfigNeverAttachToThread);
  async_dispatcher_t* dispatcher = loop.dispatcher();

  // Connect to the protocol inside the component's namespace, then create an asynchronous client
  // using the newly-established connection.
  examples::canvas::addlinemetered::InstancePtr instance_proxy;
  auto context = sys::ComponentContext::Create();
  context->svc()->Connect(instance_proxy.NewRequest(dispatcher));
  FX_LOGS(INFO) << "Outgoing connection enabled";

  instance_proxy.set_error_handler([&loop](zx_status_t status) {
    FX_LOGS(ERROR) << "Shutdown unexpectedly";
    loop.Quit();
  });

  // Provide a lambda to handle incoming |OnDrawn| events asynchronously.
  instance_proxy.events().OnDrawn = [&loop](
                                        ::examples::canvas::addlinemetered::Point top_left,
                                        ::examples::canvas::addlinemetered::Point bottom_right) {
    FX_LOGS(INFO) << "OnDrawn event received: top_left: Point { x: " << top_left.x
                  << ", y: " << top_left.y << " }, bottom_right: Point { x: " << bottom_right.x
                  << ", y: " << bottom_right.y << " }";
    loop.Quit();
  };

  instance_proxy.events().handle_unknown_event = [](uint64_t ordinal) {
    FX_LOGS(WARNING) << "Received an unknown event with ordinal " << ordinal;
  };

  for (const auto& action : conf.script()) {
    // If the next action in the script is to "WAIT", block until an |OnDrawn| event is received
    // from the server.
    if (action == "WAIT") {
      loop.Run();
      loop.ResetQuit();
      continue;
    }

    // Draw a line to the canvas by calling the server, using the two points we just parsed
    // above as arguments.
    auto line = ParseLine(action);
    FX_LOGS(INFO) << "AddLine request sent: [Point { x: " << line[1].x << ", y: " << line[1].y
                  << " }, Point { x: " << line[0].x << ", y: " << line[0].y << " }]";

    instance_proxy->AddLine(line, [&](fpromise::result<void, fidl::FrameworkErr> result) {
      if (result.is_error()) {
        // Check that our flexible two-way call was known to the server and handle the case of an
        // unknown method appropriately. In the case of this example, there is nothing we can do to
        // recover here, except to log an error and exit the program.
        FX_LOGS(ERROR) << "Server does not implement AddLine";
      }
      FX_LOGS(INFO) << "AddLine response received";

      // Quit the loop, thereby handing control back to the outer loop of actions being iterated
      // over.
      loop.Quit();
    });

    // Run the loop until the callback is resolved, at which point we can continue from here.
    loop.Run();
    loop.ResetQuit();
  }

  // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the
  // referenced bug has been resolved, we can remove the sleep.
  sleep(2);
  return 0;
}

伺服器

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <lib/async-loop/cpp/loop.h>
#include <lib/async-loop/default.h>
#include <lib/async/cpp/task.h>
#include <lib/fidl/cpp/binding.h>
#include <lib/sys/cpp/component_context.h>
#include <lib/syslog/cpp/macros.h>
#include <unistd.h>

#include <examples/canvas/addlinemetered/cpp/fidl.h>
#include <src/lib/fxl/macros.h>
#include <src/lib/fxl/memory/weak_ptr.h>

// A struct that stores the two things we care about for this example: the set of lines, and the
// bounding box that contains them.
struct CanvasState {
  // Tracks whether there has been a change since the last send, to prevent redundant updates.
  bool changed = true;
  examples::canvas::addlinemetered::BoundingBox bounding_box;
};

// An implementation of the |Instance| protocol.
class InstanceImpl final : public examples::canvas::addlinemetered::Instance {
 public:
  // Bind this implementation to an |InterfaceRequest|.
  InstanceImpl(async_dispatcher_t* dispatcher,
               fidl::InterfaceRequest<examples::canvas::addlinemetered::Instance> request)
      : binding_(fidl::Binding<examples::canvas::addlinemetered::Instance>(this)),
        weak_factory_(this) {
    binding_.Bind(std::move(request), dispatcher);

    // Gracefully handle abrupt shutdowns.
    binding_.set_error_handler([this](zx_status_t status) mutable {
      if (status != ZX_ERR_PEER_CLOSED) {
        FX_LOGS(ERROR) << "Shutdown unexpectedly";
      }
      delete this;
    });

    // Start the update timer on startup. Our server sends one update per second.
    ScheduleOnDrawnEvent(dispatcher, zx::sec(1));
  }

  void AddLine(::std::array<::examples::canvas::addlinemetered::Point, 2> line,
               AddLineCallback callback) override {
    FX_LOGS(INFO) << "AddLine request received: [Point { x: " << line[1].x << ", y: " << line[1].y
                  << " }, Point { x: " << line[0].x << ", y: " << line[0].y << " }]";

    // Update the bounding box to account for the new line we've just "added" to the canvas.
    auto& bounds = state_.bounding_box;
    for (const auto& point : line) {
      if (point.x < bounds.top_left.x) {
        bounds.top_left.x = point.x;
      }
      if (point.y > bounds.top_left.y) {
        bounds.top_left.y = point.y;
      }
      if (point.x > bounds.bottom_right.x) {
        bounds.bottom_right.x = point.x;
      }
      if (point.y < bounds.bottom_right.y) {
        bounds.bottom_right.y = point.y;
      }
    }

    // Mark the state as "dirty", so that an update is sent back to the client on the next |OnDrawn|
    // event.
    state_.changed = true;

    // Because this is now a two-way method, we must use the generated |callback| to send an in
    // this case empty reply back to the client. This is the mechanic which syncs the flow rate
    // between the client and server on this method, thereby preventing the client from "flooding"
    // the server with unacknowledged work.
    callback(fpromise::ok());
    FX_LOGS(INFO) << "AddLine response sent";
  }

  void handle_unknown_method(uint64_t ordinal, bool method_has_response) override {
    FX_LOGS(WARNING) << "Received an unknown method with ordinal " << ordinal;
  }

 private:
  // Each scheduled update waits for the allotted amount of time, sends an update if something has
  // changed, and schedules the next update.
  void ScheduleOnDrawnEvent(async_dispatcher_t* dispatcher, zx::duration after) {
    async::PostDelayedTask(
        dispatcher,
        [&, dispatcher, after, weak = weak_factory_.GetWeakPtr()] {
          // Halt execution if the binding has been deallocated already.
          if (!weak) {
            return;
          }

          // Schedule the next update if the binding still exists.
          weak->ScheduleOnDrawnEvent(dispatcher, after);

          // No need to send an update if nothing has changed since the last one.
          if (!weak->state_.changed) {
            return;
          }

          // This is where we would draw the actual lines. Since this is just an example, we'll
          // avoid doing the actual rendering, and simply send the bounding box to the client
          // instead.
          auto top_left = state_.bounding_box.top_left;
          auto bottom_right = state_.bounding_box.bottom_right;
          binding_.events().OnDrawn(top_left, bottom_right);
          FX_LOGS(INFO) << "OnDrawn event sent: top_left: Point { x: " << top_left.x
                        << ", y: " << top_left.y
                        << " }, bottom_right: Point { x: " << bottom_right.x
                        << ", y: " << bottom_right.y << " }";

          // Reset the change tracker.
          state_.changed = false;
        },
        after);
  }

  fidl::Binding<examples::canvas::addlinemetered::Instance> binding_;
  CanvasState state_ = CanvasState{};

  // Generates weak references to this object, which are appropriate to pass into asynchronous
  // callbacks that need to access this object. The references are automatically invalidated
  // if this object is destroyed.
  fxl::WeakPtrFactory<InstanceImpl> weak_factory_;
};

int main(int argc, char** argv) {
  FX_LOGS(INFO) << "Started";

  // The event loop is used to asynchronously listen for incoming connections and requests from the
  // client. The following initializes the loop, and obtains the dispatcher, which will be used when
  // binding the server implementation to a channel.
  //
  // Note that unlike the new C++ bindings, HLCPP bindings rely on the async loop being attached to
  // the current thread via the |kAsyncLoopConfigAttachToCurrentThread| configuration.
  async::Loop loop(&kAsyncLoopConfigAttachToCurrentThread);
  async_dispatcher_t* dispatcher = loop.dispatcher();

  // Create an |OutgoingDirectory| instance.
  //
  // The |component::OutgoingDirectory| class serves the outgoing directory for our component.
  // This directory is where the outgoing FIDL protocols are installed so that they can be
  // provided to other components.
  auto context = sys::ComponentContext::CreateAndServeOutgoingDirectory();

  // Register a handler for components trying to connect to
  // |examples.canvas.addlinemetered.Instance|.
  context->outgoing()->AddPublicService(
      fidl::InterfaceRequestHandler<examples::canvas::addlinemetered::Instance>(
          [dispatcher](fidl::InterfaceRequest<examples::canvas::addlinemetered::Instance> request) {
            // Create an instance of our |InstanceImpl| that destroys itself when the connection
            // closes.
            new InstanceImpl(dispatcher, std::move(request));
          }));

  // Everything is wired up. Sit back and run the loop until an incoming connection wakes us up.
  FX_LOGS(INFO) << "Listening for incoming connections";
  loop.Run();
  return 0;
}

用戶端明確要求繪圖作業

如要提升 Instance 通訊協定的效能,其中一個方法是允許 批次處理行:與其每次都傳送單一 AddLine(...); 請在畫布加入新的一行,等待回覆後 以便下一行程式碼,改為將許多行合併成單一欄位 叫用新 AddLines(...); 呼叫。客戶現在可以決定 最好從大量線段繪製出線條

如果不實作,我們會在以下情況下遇到伺服器和伺服器問題 用戶端完全未同步:用戶端可將 未受限的 AddLines(...); 呼叫,且伺服器同樣可能會使用戶端發生洪水 無法處理的 -> OnDrawn(...); 事件無論是 就是新增簡單的 Ready() -> (); 方法進行同步處理 用途。每當用戶端準備好接收此方法時,就會呼叫這個方法 下一個繪圖更新,且伺服器的回應指出用戶端 才能繼續處理更多要求

現在,我們有一些雙向流量控制。通訊協定現已導入 動態饋給前向模式,允許在部分 同步處理「修訂」呼叫會觸發伺服器中的實際作業。這個 可防止用戶端因工作負荷過大。同樣地, 伺服器無法再傳送不受限的 -> OnDrawn(...); 事件:每個 事件必須遵循來自用戶端 (Ready() -> (); 呼叫) 的信號, 表示已準備好執行更多工作。這就是所謂的受限 事件模式

具體的導入方式必須手動套用部分規則:用戶端 如收到未發生的 -> OnDrawn(...); 事件,必須關閉連線 透過 Ready() -> (); 方法傳送要求

FIDL、CML 和領域介面定義如下:

FIDL

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
library examples.canvas.clientrequesteddraw;

/// A point in 2D space.
type Point = struct {
    x int64;
    y int64;
};

/// A line in 2D space.
alias Line = array<Point, 2>;

/// A bounding box in 2D space. This is the result of "drawing" operations on our canvas, and what
/// the server reports back to the client. These bounds are sufficient to contain all of the
/// lines (inclusive) on a canvas at a given time.
type BoundingBox = struct {
    top_left Point;
    bottom_right Point;
};

/// Manages a single instance of a canvas. Each session of this protocol is responsible for a new
/// canvas.
@discoverable
open protocol Instance {
    /// Add multiple lines to the canvas. We are able to reduce protocol chatter and the number of
    /// requests needed by batching instead of calling the simpler `AddLine(...)` one line at a
    /// time.
    flexible AddLines(struct {
        lines vector<Line>;
    });

    /// Rather than the server randomly performing draws, or trying to guess when to do so, the
    /// client must explicitly ask for them. This creates a bit of extra chatter with the additional
    /// method invocation, but allows much greater client-side control of when the canvas is "ready"
    /// for a view update, thereby eliminating unnecessary draws.
    ///
    /// This method also has the benefit of "throttling" the `-> OnDrawn(...)` event - rather than
    /// allowing a potentially unlimited flood of `-> OnDrawn(...)` calls, we now have the runtime
    /// enforced semantic that each `-> OnDrawn(...)` call must follow a unique `Ready() -> ()` call
    /// from the client. An unprompted `-> OnDrawn(...)` is invalid, and should cause the channel to
    /// immediately close.
    flexible Ready() -> ();

    /// Update the client with the latest drawing state. The server makes no guarantees about how
    /// often this event occurs - it could occur multiple times per board state, for example.
    flexible -> OnDrawn(BoundingBox);
};

CML

用戶端

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
{
    include: [ "syslog/client.shard.cml" ],
    program: {
        runner: "elf",
        binary: "bin/client_bin",
    },
    use: [
        { protocol: "examples.canvas.clientrequesteddraw.Instance" },
    ],
    config: {
        // A script for the client to follow. Entries in the script may take one of two forms: a
        // pair of signed-integer coordinates like "-2,15:4,5", or the string "READY". The former
        // builds a local vector sent via a single `AddLines(...)` call, while the latter sends a
        // `Ready() -> ()` call pauses execution until the next `->OnDrawn(...)` event is received.
        //
        // TODO(https://fxbug.dev/42178362): It would absolve individual language implementations of a great
        //   deal of string parsing if we were able to use a vector of `union { Point; Ready}` here.
        script: {
            type: "vector",
            max_count: 100,
            element: {
                type: "string",
                max_size: 64,
            },
        },

    },
}

伺服器

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
{
    include: [ "syslog/client.shard.cml" ],
    program: {
        runner: "elf",
        binary: "bin/server_bin",
    },
    capabilities: [
        { protocol: "examples.canvas.clientrequesteddraw.Instance" },
    ],
    expose: [
        {
            protocol: "examples.canvas.clientrequesteddraw.Instance",
            from: "self",
        },
    ],
}

領域

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
{
    children: [
        {
            name: "client",
            url: "#meta/client.cm",
        },
        {
            name: "server",
            url: "#meta/server.cm",
        },
    ],
    offer: [
        // Route the protocol under test from the server to the client.
        {
            protocol: "examples.canvas.clientrequesteddraw.Instance",
            from: "#server",
            to: "#client",
        },

        // Route diagnostics support to all children.
        {
            protocol: [
                "fuchsia.inspect.InspectSink",
                "fuchsia.logger.LogSink",
            ],
            from: "parent",
            to: [
                "#client",
                "#server",
            ],
        },
    ],
}

用戶端和伺服器實作項目現在可以使用任何支援的語言編寫:

荒漠油廠

用戶端

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use anyhow::{format_err, Context as _, Error};
use config::Config;
use fidl_examples_canvas_clientrequesteddraw::{InstanceEvent, InstanceMarker, Point};
use fuchsia_component::client::connect_to_protocol;
use futures::TryStreamExt;
use std::{thread, time};

#[fuchsia::main]
async fn main() -> Result<(), Error> {
    println!("Started");

    // Load the structured config values passed to this component at startup.
    let config = Config::take_from_startup_handle();

    // Use the Component Framework runtime to connect to the newly spun up server component. We wrap
    // our retained client end in a proxy object that lets us asynchronously send Instance requests
    // across the channel.
    let instance = connect_to_protocol::<InstanceMarker>()?;
    println!("Outgoing connection enabled");

    let mut batched_lines = Vec::<[Point; 2]>::new();
    for action in config.script.into_iter() {
        // If the next action in the script is to "PUSH", send a batch of lines to the server.
        if action == "PUSH" {
            instance.add_lines(&batched_lines).context("Could not send lines")?;
            println!("AddLines request sent");
            batched_lines.clear();
            continue;
        }

        // If the next action in the script is to "WAIT", block until an OnDrawn event is received
        // from the server.
        if action == "WAIT" {
            let mut event_stream = instance.take_event_stream();
            loop {
                match event_stream
                    .try_next()
                    .await
                    .context("Error getting event response from proxy")?
                    .ok_or_else(|| format_err!("Proxy sent no events"))?
                {
                    InstanceEvent::OnDrawn { top_left, bottom_right } => {
                        println!(
                            "OnDrawn event received: top_left: {:?}, bottom_right: {:?}",
                            top_left, bottom_right
                        );
                        break;
                    }
                    InstanceEvent::_UnknownEvent { ordinal, .. } => {
                        println!("Received an unknown event with ordinal {ordinal}");
                    }
                }
            }

            // Now, inform the server that we are ready to receive more updates whenever they are
            // ready for us.
            println!("Ready request sent");
            instance.ready().await.context("Could not send ready call")?;
            println!("Ready success");
            continue;
        }

        // Add a line to the next batch. Parse the string input, making two points out of it.
        let mut points = action
            .split(":")
            .map(|point| {
                let integers = point
                    .split(",")
                    .map(|integer| integer.parse::<i64>().unwrap())
                    .collect::<Vec<i64>>();
                Point { x: integers[0], y: integers[1] }
            })
            .collect::<Vec<Point>>();

        // Assemble a line from the two points.
        let from = points.pop().ok_or(format_err!("line requires 2 points, but has 0"))?;
        let to = points.pop().ok_or(format_err!("line requires 2 points, but has 1"))?;
        let mut line: [Point; 2] = [from, to];

        // Batch a line for drawing to the canvas using the two points provided.
        println!("AddLines batching line: {:?}", &mut line);
        batched_lines.push(line);
    }

    // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the
    // referenced bug has been resolved, we can remove the sleep.
    thread::sleep(time::Duration::from_secs(2));
    Ok(())
}

伺服器

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use anyhow::{anyhow, Context as _, Error};
use fidl::endpoints::RequestStream as _;
use fidl_examples_canvas_clientrequesteddraw::{
    BoundingBox, InstanceRequest, InstanceRequestStream, Point,
};
use fuchsia_async::{Time, Timer};
use fuchsia_component::server::ServiceFs;
use fuchsia_zircon::{self as zx};
use futures::future::join;
use futures::prelude::*;
use std::sync::{Arc, Mutex};

// A struct that stores the two things we care about for this example: the bounding box the lines
// that have been added thus far, and bit to track whether or not there have been changes since the
// last `OnDrawn` event.
#[derive(Debug)]
struct CanvasState {
    // Tracks whether there has been a change since the last send, to prevent redundant updates.
    changed: bool,
    // Tracks whether or not the client has declared itself ready to receive more updated.
    ready: bool,
    bounding_box: BoundingBox,
}

/// Handler for the `AddLines` method.
fn add_lines(state: &mut CanvasState, lines: Vec<[Point; 2]>) {
    // Update the bounding box to account for the new lines we've just "added" to the canvas.
    let bounds = &mut state.bounding_box;
    for line in lines {
        println!("AddLines printing line: {:?}", line);
        for point in line {
            if point.x < bounds.top_left.x {
                bounds.top_left.x = point.x;
            }
            if point.y > bounds.top_left.y {
                bounds.top_left.y = point.y;
            }
            if point.x > bounds.bottom_right.x {
                bounds.bottom_right.x = point.x;
            }
            if point.y < bounds.bottom_right.y {
                bounds.bottom_right.y = point.y;
            }
        }
    }

    // Mark the state as "dirty", so that an update is sent back to the client on the next tick.
    state.changed = true
}

/// Creates a new instance of the server, paired to a single client across a zircon channel.
async fn run_server(stream: InstanceRequestStream) -> Result<(), Error> {
    // Create a new in-memory state store for the state of the canvas. The store will live for the
    // lifetime of the connection between the server and this particular client.
    let state = Arc::new(Mutex::new(CanvasState {
        changed: true,
        ready: true,
        bounding_box: BoundingBox {
            top_left: Point { x: 0, y: 0 },
            bottom_right: Point { x: 0, y: 0 },
        },
    }));

    // Take ownership of the control_handle from the stream, which will allow us to push events from
    // a different async task.
    let control_handle = stream.control_handle();

    // A separate watcher task periodically "draws" the canvas, and notifies the client of the new
    // state. We'll need a cloned reference to the canvas state to be accessible from the new
    // task.
    let state_ref = state.clone();
    let update_sender = || async move {
        loop {
            // Our server sends one update per second, but only if the client has declared that it
            // is ready to receive one.
            Timer::new(Time::after(zx::Duration::from_seconds(1))).await;
            let mut state = state_ref.lock().unwrap();
            if !state.changed || !state.ready {
                continue;
            }

            // After acquiring the lock, this is where we would draw the actual lines. Since this is
            // just an example, we'll avoid doing the actual rendering, and simply send the bounding
            // box to the client instead.
            let bounds = state.bounding_box;
            match control_handle.send_on_drawn(&bounds.top_left, &bounds.bottom_right) {
                Ok(_) => println!(
                    "OnDrawn event sent: top_left: {:?}, bottom_right: {:?}",
                    bounds.top_left, bounds.bottom_right
                ),
                Err(_) => return,
            }

            // Reset the change and ready trackers.
            state.ready = false;
            state.changed = false;
        }
    };

    // Handle requests on the protocol sequentially - a new request is not handled until its
    // predecessor has been processed.
    let state_ref = &state;
    let request_handler =
        stream.map(|result| result.context("failed request")).try_for_each(|request| async move {
            // Match based on the method being invoked.
            match request {
                InstanceRequest::AddLines { lines, .. } => {
                    println!("AddLines request received");
                    add_lines(&mut state_ref.lock().unwrap(), lines);
                }
                InstanceRequest::Ready { responder, .. } => {
                    println!("Ready request received");
                    // The client must only call `Ready() -> ();` after receiving an `-> OnDrawn();`
                    // event; if two "consecutive" `Ready() -> ();` calls are received, this
                    // interaction has entered an invalid state, and should be aborted immediately.
                    let mut state = state_ref.lock().unwrap();
                    if state.ready == true {
                        return Err(anyhow!("Invalid back-to-back `Ready` requests received"));
                    }

                    state.ready = true;
                    responder.send().context("Error responding")?;
                } //
                InstanceRequest::_UnknownMethod { ordinal, .. } => {
                    println!("Received an unknown method with ordinal {ordinal}");
                }
            }
            Ok(())
        });

    // This line will only be reached if the server errors out. The stream will await indefinitely,
    // thereby creating a long-lived server. Here, we first wait for the updater task to realize the
    // connection has died, then bubble up the error.
    join(request_handler, update_sender()).await.0
}

// A helper enum that allows us to treat a `Instance` service instance as a value.
enum IncomingService {
    Instance(InstanceRequestStream),
}

#[fuchsia::main]
async fn main() -> Result<(), Error> {
    println!("Started");

    // Add a discoverable instance of our `Instance` protocol - this will allow the client to see
    // the server and connect to it.
    let mut fs = ServiceFs::new_local();
    fs.dir("svc").add_fidl_service(IncomingService::Instance);
    fs.take_and_serve_directory_handle()?;
    println!("Listening for incoming connections");

    // The maximum number of concurrent clients that may be served by this process.
    const MAX_CONCURRENT: usize = 10;

    // Serve each connection simultaneously, up to the `MAX_CONCURRENT` limit.
    fs.for_each_concurrent(MAX_CONCURRENT, |IncomingService::Instance(stream)| {
        run_server(stream).unwrap_or_else(|e| println!("{:?}", e))
    })
    .await;

    Ok(())
}

C++ (自然)

用戶端

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <fidl/examples.canvas.clientrequesteddraw/cpp/fidl.h>
#include <lib/async-loop/cpp/loop.h>
#include <lib/component/incoming/cpp/protocol.h>
#include <lib/syslog/cpp/macros.h>
#include <unistd.h>

#include <charconv>

#include <examples/fidl/new/canvas/client_requested_draw/cpp_natural/client/config.h>

// The |EventHandler| is a derived class that we pass into the |fidl::WireClient| to handle incoming
// events asynchronously.
class EventHandler : public fidl::AsyncEventHandler<examples_canvas_clientrequesteddraw::Instance> {
 public:
  // Handler for |OnDrawn| events sent from the server.
  void OnDrawn(
      fidl::Event<examples_canvas_clientrequesteddraw::Instance::OnDrawn>& event) override {
    ::examples_canvas_clientrequesteddraw::Point top_left = event.top_left();
    ::examples_canvas_clientrequesteddraw::Point bottom_right = event.bottom_right();
    FX_LOGS(INFO) << "OnDrawn event received: top_left: Point { x: " << top_left.x()
                  << ", y: " << top_left.y() << " }, bottom_right: Point { x: " << bottom_right.x()
                  << ", y: " << bottom_right.y() << " }";
    loop_.Quit();
  }

  void on_fidl_error(fidl::UnbindInfo error) override { FX_LOGS(ERROR) << error; }

  void handle_unknown_event(
      fidl::UnknownEventMetadata<examples_canvas_clientrequesteddraw::Instance> metadata) override {
    FX_LOGS(WARNING) << "Received an unknown event with ordinal " << metadata.event_ordinal;
  }

  explicit EventHandler(async::Loop& loop) : loop_(loop) {}

 private:
  async::Loop& loop_;
};

// A helper function that takes a coordinate in string form, like "123,-456", and parses it into a
// a struct of the form |{ in64 x; int64 y; }|.
::examples_canvas_clientrequesteddraw::Point ParsePoint(std::string_view input) {
  int64_t x = 0;
  int64_t y = 0;
  size_t index = input.find(',');
  if (index != std::string::npos) {
    std::from_chars(input.data(), input.data() + index, x);
    std::from_chars(input.data() + index + 1, input.data() + input.length(), y);
  }
  return ::examples_canvas_clientrequesteddraw::Point(x, y);
}

using Line = ::std::array<::examples_canvas_clientrequesteddraw::Point, 2>;

// A helper function that takes a coordinate pair in string form, like "1,2:-3,-4", and parses it
// into an array of 2 |Point| structs.
Line ParseLine(const std::string& action) {
  auto input = std::string_view(action);
  size_t index = input.find(':');
  if (index != std::string::npos) {
    return {ParsePoint(input.substr(0, index)), ParsePoint(input.substr(index + 1))};
  }
  return {};
}

int main(int argc, const char** argv) {
  FX_LOGS(INFO) << "Started";

  // Retrieve component configuration.
  auto conf = config::Config::TakeFromStartupHandle();

  // Start up an async loop and dispatcher.
  async::Loop loop(&kAsyncLoopConfigNeverAttachToThread);
  async_dispatcher_t* dispatcher = loop.dispatcher();

  // Connect to the protocol inside the component's namespace. This can fail so it's wrapped in a
  // |zx::result| and it must be checked for errors.
  zx::result client_end = component::Connect<examples_canvas_clientrequesteddraw::Instance>();
  if (!client_end.is_ok()) {
    FX_LOGS(ERROR) << "Synchronous error when connecting to the |Instance| protocol: "
                   << client_end.status_string();
    return -1;
  }

  // Create an instance of the event handler.
  EventHandler event_handler(loop);

  // Create an asynchronous client using the newly-established connection.
  fidl::Client client(std::move(*client_end), dispatcher, &event_handler);
  FX_LOGS(INFO) << "Outgoing connection enabled";

  std::vector<Line> batched_lines;
  for (const auto& action : conf.script()) {
    // If the next action in the script is to "PUSH", send a batch of lines to the server.
    if (action == "PUSH") {
      fit::result<fidl::Error> result = client->AddLines(batched_lines);
      if (!result.is_ok()) {
        // Check that our one-way call was enqueued successfully, and handle the error
        // appropriately. In the case of this example, there is nothing we can do to recover here,
        // except to log an error and exit the program.
        FX_LOGS(ERROR) << "Could not send AddLines request: " << result.error_value();
        return -1;
      }

      batched_lines.clear();
      FX_LOGS(INFO) << "AddLines request sent";
      continue;
    }

    // If the next action in the script is to "WAIT", block until an |OnDrawn| event is received
    // from the server.
    if (action == "WAIT") {
      loop.Run();
      loop.ResetQuit();

      // Now, inform the server that we are ready to receive more updates whenever they are
      // ready for us.
      FX_LOGS(INFO) << "Ready request sent";
      client->Ready().ThenExactlyOnce(
          [&](fidl::Result<examples_canvas_clientrequesteddraw::Instance::Ready> result) {
            // Check if the FIDL call succeeded or not.
            if (result.is_ok()) {
              FX_LOGS(INFO) << "Ready success";
            } else {
              FX_LOGS(ERROR) << "Could not send Ready request: " << result.error_value();
            }

            // Quit the loop, thereby handing control back to the outer loop of actions being
            // iterated over.
            loop.Quit();
          });

      // Run the loop until the callback is resolved, at which point we can continue from here.
      loop.Run();
      loop.ResetQuit();

      continue;
    }

    // Batch a line for drawing to the canvas using the two points provided.
    Line line = ParseLine(action);
    batched_lines.push_back(line);
    FX_LOGS(INFO) << "AddLines batching line: [Point { x: " << line[1].x() << ", y: " << line[1].y()
                  << " }, Point { x: " << line[0].x() << ", y: " << line[0].y() << " }]";
  }

  // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the
  // referenced bug has been resolved, we can remove the sleep.
  sleep(2);
  return 0;
}

伺服器

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <fidl/examples.canvas.clientrequesteddraw/cpp/fidl.h>
#include <lib/async-loop/cpp/loop.h>
#include <lib/async/cpp/task.h>
#include <lib/component/outgoing/cpp/outgoing_directory.h>
#include <lib/fidl/cpp/wire/channel.h>
#include <lib/syslog/cpp/macros.h>
#include <unistd.h>

#include <src/lib/fxl/macros.h>
#include <src/lib/fxl/memory/weak_ptr.h>

// A struct that stores the two things we care about for this example: the set of lines, and the
// bounding box that contains them.
struct CanvasState {
  // Tracks whether there has been a change since the last send, to prevent redundant updates.
  bool changed = true;
  // Tracks whether or not the client has declared itself ready to receive more updated.
  bool ready = true;
  examples_canvas_clientrequesteddraw::BoundingBox bounding_box;
};

// An implementation of the |Instance| protocol.
class InstanceImpl final : public fidl::Server<examples_canvas_clientrequesteddraw::Instance> {
 public:
  // Bind this implementation to a channel.
  InstanceImpl(async_dispatcher_t* dispatcher,
               fidl::ServerEnd<examples_canvas_clientrequesteddraw::Instance> server_end)
      : binding_(dispatcher, std::move(server_end), this, std::mem_fn(&InstanceImpl::OnFidlClosed)),
        weak_factory_(this) {
    // Start the update timer on startup. Our server sends one update per second
    ScheduleOnDrawnEvent(dispatcher, zx::sec(1));
  }

  void OnFidlClosed(fidl::UnbindInfo info) {
    if (info.reason() != ::fidl::Reason::kPeerClosedWhileReading) {
      FX_LOGS(ERROR) << "Shutdown unexpectedly";
    }
    delete this;
  }

  void AddLines(AddLinesRequest& request, AddLinesCompleter::Sync& completer) override {
    FX_LOGS(INFO) << "AddLines request received";
    for (const auto& points : request.lines()) {
      FX_LOGS(INFO) << "AddLines printing line: [Point { x: " << points[1].x()
                    << ", y: " << points[1].y() << " }, Point { x: " << points[0].x()
                    << ", y: " << points[0].y() << " }]";

      // Update the bounding box to account for the new line we've just "added" to the canvas.
      auto& bounds = state_.bounding_box;
      for (const auto& point : points) {
        if (point.x() < bounds.top_left().x()) {
          bounds.top_left().x() = point.x();
        }
        if (point.y() > bounds.top_left().y()) {
          bounds.top_left().y() = point.y();
        }
        if (point.x() > bounds.bottom_right().x()) {
          bounds.bottom_right().x() = point.x();
        }
        if (point.y() < bounds.bottom_right().y()) {
          bounds.bottom_right().y() = point.y();
        }
      }
    }

    // Mark the state as "dirty", so that an update is sent back to the client on the next |OnDrawn|
    // event.
    state_.changed = true;
  }

  void Ready(ReadyCompleter::Sync& completer) override {
    FX_LOGS(INFO) << "Ready request received";

    // The client must only call `Ready() -> ();` after receiving an `-> OnDrawn();` event; if two
    // "consecutive" `Ready() -> ();` calls are received, this interaction has entered an invalid
    // state, and should be aborted immediately.
    if (state_.ready == true) {
      FX_LOGS(ERROR) << "Invalid back-to-back `Ready` requests received";
    }

    state_.ready = true;
    completer.Reply();
  }

  void handle_unknown_method(
      fidl::UnknownMethodMetadata<examples_canvas_clientrequesteddraw::Instance> metadata,
      fidl::UnknownMethodCompleter::Sync& completer) override {
    FX_LOGS(WARNING) << "Received an unknown method with ordinal " << metadata.method_ordinal;
  }

 private:
  // Each scheduled update waits for the allotted amount of time, sends an update if something has
  // changed, and schedules the next update.
  void ScheduleOnDrawnEvent(async_dispatcher_t* dispatcher, zx::duration after) {
    async::PostDelayedTask(
        dispatcher,
        [&, dispatcher, after, weak = weak_factory_.GetWeakPtr()] {
          // Halt execution if the binding has been deallocated already.
          if (!weak) {
            return;
          }

          // Schedule the next update if the binding still exists.
          weak->ScheduleOnDrawnEvent(dispatcher, after);

          // No need to send an update if nothing has changed since the last one, or the client has
          // not yet informed us that it is ready for more updates.
          if (!weak->state_.changed || !weak->state_.ready) {
            return;
          }

          // This is where we would draw the actual lines. Since this is just an example, we'll
          // avoid doing the actual rendering, and simply send the bounding box to the client
          // instead.
          auto result = fidl::SendEvent(binding_)->OnDrawn(state_.bounding_box);
          if (!result.is_ok()) {
            return;
          }

          auto top_left = state_.bounding_box.top_left();
          auto bottom_right = state_.bounding_box.bottom_right();
          FX_LOGS(INFO) << "OnDrawn event sent: top_left: Point { x: " << top_left.x()
                        << ", y: " << top_left.y()
                        << " }, bottom_right: Point { x: " << bottom_right.x()
                        << ", y: " << bottom_right.y() << " }";

          // Reset the change and ready trackers.
          state_.ready = false;
          state_.changed = false;
        },
        after);
  }

  fidl::ServerBinding<examples_canvas_clientrequesteddraw::Instance> binding_;
  CanvasState state_ = CanvasState{};

  // Generates weak references to this object, which are appropriate to pass into asynchronous
  // callbacks that need to access this object. The references are automatically invalidated
  // if this object is destroyed.
  fxl::WeakPtrFactory<InstanceImpl> weak_factory_;
};

int main(int argc, char** argv) {
  FX_LOGS(INFO) << "Started";

  // The event loop is used to asynchronously listen for incoming connections and requests from the
  // client. The following initializes the loop, and obtains the dispatcher, which will be used when
  // binding the server implementation to a channel.
  async::Loop loop(&kAsyncLoopConfigNeverAttachToThread);
  async_dispatcher_t* dispatcher = loop.dispatcher();

  // Create an |OutgoingDirectory| instance.
  //
  // The |component::OutgoingDirectory| class serves the outgoing directory for our component. This
  // directory is where the outgoing FIDL protocols are installed so that they can be provided to
  // other components.
  component::OutgoingDirectory outgoing = component::OutgoingDirectory(dispatcher);

  // The `ServeFromStartupInfo()` function sets up the outgoing directory with the startup handle.
  // The startup handle is a handle provided to every component by the system, so that they can
  // serve capabilities (e.g. FIDL protocols) to other components.
  zx::result result = outgoing.ServeFromStartupInfo();
  if (result.is_error()) {
    FX_LOGS(ERROR) << "Failed to serve outgoing directory: " << result.status_string();
    return -1;
  }

  // Register a handler for components trying to connect to
  // |examples.canvas.clientrequesteddraw.Instance|.
  result = outgoing.AddUnmanagedProtocol<examples_canvas_clientrequesteddraw::Instance>(
      [dispatcher](fidl::ServerEnd<examples_canvas_clientrequesteddraw::Instance> server_end) {
        // Create an instance of our InstanceImpl that destroys itself when the connection closes.
        new InstanceImpl(dispatcher, std::move(server_end));
      });
  if (result.is_error()) {
    FX_LOGS(ERROR) << "Failed to add Instance protocol: " << result.status_string();
    return -1;
  }

  // Everything is wired up. Sit back and run the loop until an incoming connection wakes us up.
  FX_LOGS(INFO) << "Listening for incoming connections";
  loop.Run();
  return 0;
}

C++ (有線)

用戶端

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <fidl/examples.canvas.clientrequesteddraw/cpp/wire.h>
#include <lib/async-loop/cpp/loop.h>
#include <lib/component/incoming/cpp/protocol.h>
#include <lib/syslog/cpp/macros.h>
#include <unistd.h>

#include <charconv>

#include <examples/fidl/new/canvas/client_requested_draw/cpp_wire/client/config.h>

// The |EventHandler| is a derived class that we pass into the |fidl::WireClient| to handle incoming
// events asynchronously.
class EventHandler
    : public fidl::WireAsyncEventHandler<examples_canvas_clientrequesteddraw::Instance> {
 public:
  // Handler for |OnDrawn| events sent from the server.
  void OnDrawn(
      fidl::WireEvent<examples_canvas_clientrequesteddraw::Instance::OnDrawn>* event) override {
    ::examples_canvas_clientrequesteddraw::wire::Point top_left = event->top_left;
    ::examples_canvas_clientrequesteddraw::wire::Point bottom_right = event->bottom_right;
    FX_LOGS(INFO) << "OnDrawn event received: top_left: Point { x: " << top_left.x
                  << ", y: " << top_left.y << " }, bottom_right: Point { x: " << bottom_right.x
                  << ", y: " << bottom_right.y << " }";
    loop_.Quit();
  }

  void on_fidl_error(fidl::UnbindInfo error) override { FX_LOGS(ERROR) << error; }

  void handle_unknown_event(
      fidl::UnknownEventMetadata<examples_canvas_clientrequesteddraw::Instance> metadata) override {
    FX_LOGS(WARNING) << "Received an unknown event with ordinal " << metadata.event_ordinal;
  }

  explicit EventHandler(async::Loop& loop) : loop_(loop) {}

 private:
  async::Loop& loop_;
};

// A helper function that takes a coordinate in string form, like "123,-456", and parses it into a
// a struct of the form |{ in64 x; int64 y; }|.
::examples_canvas_clientrequesteddraw::wire::Point ParsePoint(std::string_view input) {
  int64_t x = 0;
  int64_t y = 0;
  size_t index = input.find(',');
  if (index != std::string::npos) {
    std::from_chars(input.data(), input.data() + index, x);
    std::from_chars(input.data() + index + 1, input.data() + input.length(), y);
  }
  return ::examples_canvas_clientrequesteddraw::wire::Point{.x = x, .y = y};
}

using Line = ::fidl::Array<::examples_canvas_clientrequesteddraw::wire::Point, 2>;

// A helper function that takes a coordinate pair in string form, like "1,2:-3,-4", and parses it
// into an array of 2 |Point| structs.
Line ParseLine(const std::string& action) {
  auto input = std::string_view(action);
  size_t index = input.find(':');
  if (index != std::string::npos) {
    return {ParsePoint(input.substr(0, index)), ParsePoint(input.substr(index + 1))};
  }
  return {};
}

int main(int argc, const char** argv) {
  FX_LOGS(INFO) << "Started";

  // Retrieve component configuration.
  auto conf = config::Config::TakeFromStartupHandle();

  // Start up an async loop and dispatcher.
  async::Loop loop(&kAsyncLoopConfigNeverAttachToThread);
  async_dispatcher_t* dispatcher = loop.dispatcher();

  // Connect to the protocol inside the component's namespace. This can fail so it's wrapped in a
  // |zx::result| and it must be checked for errors.
  zx::result client_end = component::Connect<examples_canvas_clientrequesteddraw::Instance>();
  if (!client_end.is_ok()) {
    FX_LOGS(ERROR) << "Synchronous error when connecting to the |Instance| protocol: "
                   << client_end.status_string();
    return -1;
  }

  // Create an instance of the event handler.
  EventHandler event_handler(loop);

  // Create an asynchronous client using the newly-established connection.
  fidl::WireClient client(std::move(*client_end), dispatcher, &event_handler);
  FX_LOGS(INFO) << "Outgoing connection enabled";

  std::vector<Line> batched_lines;
  for (const auto& action : conf.script()) {
    // If the next action in the script is to "PUSH", send a batch of lines to the server.
    if (action == "PUSH") {
      fidl::Status status = client->AddLines(fidl::VectorView<Line>::FromExternal(batched_lines));
      if (!status.ok()) {
        // Check that our one-way call was enqueued successfully, and handle the error
        // appropriately. In the case of this example, there is nothing we can do to recover here,
        // except to log an error and exit the program.
        FX_LOGS(ERROR) << "Could not send AddLines request: " << status.error();
        return -1;
      }

      batched_lines.clear();
      FX_LOGS(INFO) << "AddLines request sent";
      continue;
    }

    // If the next action in the script is to "WAIT", block until an |OnDrawn| event is received
    // from the server.
    if (action == "WAIT") {
      loop.Run();
      loop.ResetQuit();

      // Now, inform the server that we are ready to receive more updates whenever they are
      // ready for us.
      FX_LOGS(INFO) << "Ready request sent";
      client->Ready().ThenExactlyOnce(
          [&](fidl::WireUnownedResult<examples_canvas_clientrequesteddraw::Instance::Ready>&
                  result) {
            // Check if the FIDL call succeeded or not.
            if (result.ok()) {
              FX_LOGS(INFO) << "Ready success";
            } else {
              FX_LOGS(ERROR) << "Could not send Ready request: " << result.error();
            }

            // Quit the loop, thereby handing control back to the outer loop of actions being
            // iterated over.
            loop.Quit();
          });

      // Run the loop until the callback is resolved, at which point we can continue from here.
      loop.Run();
      loop.ResetQuit();

      continue;
    }

    // Batch a line for drawing to the canvas using the two points provided.
    Line line = ParseLine(action);
    batched_lines.push_back(line);
    FX_LOGS(INFO) << "AddLines batching line: [Point { x: " << line[1].x << ", y: " << line[1].y
                  << " }, Point { x: " << line[0].x << ", y: " << line[0].y << " }]";
  }

  // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the
  // referenced bug has been resolved, we can remove the sleep.
  sleep(2);
  return 0;
}

伺服器

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <fidl/examples.canvas.clientrequesteddraw/cpp/wire.h>
#include <lib/async-loop/cpp/loop.h>
#include <lib/async/cpp/task.h>
#include <lib/component/outgoing/cpp/outgoing_directory.h>
#include <lib/fidl/cpp/wire/channel.h>
#include <lib/syslog/cpp/macros.h>
#include <unistd.h>

#include <src/lib/fxl/macros.h>
#include <src/lib/fxl/memory/weak_ptr.h>

// A struct that stores the two things we care about for this example: the set of lines, and the
// bounding box that contains them.
struct CanvasState {
  // Tracks whether there has been a change since the last send, to prevent redundant updates.
  bool changed = true;
  // Tracks whether or not the client has declared itself ready to receive more updated.
  bool ready = true;
  examples_canvas_clientrequesteddraw::wire::BoundingBox bounding_box;
};

// An implementation of the |Instance| protocol.
class InstanceImpl final : public fidl::WireServer<examples_canvas_clientrequesteddraw::Instance> {
 public:
  // Bind this implementation to a channel.
  InstanceImpl(async_dispatcher_t* dispatcher,
               fidl::ServerEnd<examples_canvas_clientrequesteddraw::Instance> server_end)
      : binding_(dispatcher, std::move(server_end), this, std::mem_fn(&InstanceImpl::OnFidlClosed)),
        weak_factory_(this) {
    // Start the update timer on startup. Our server sends one update per second
    ScheduleOnDrawnEvent(dispatcher, zx::sec(1));
  }

  void OnFidlClosed(fidl::UnbindInfo info) {
    if (info.reason() != ::fidl::Reason::kPeerClosedWhileReading) {
      FX_LOGS(ERROR) << "Shutdown unexpectedly";
    }
    delete this;
  }

  void AddLines(AddLinesRequestView request, AddLinesCompleter::Sync& completer) override {
    FX_LOGS(INFO) << "AddLines request received";
    for (const auto& points : request->lines) {
      FX_LOGS(INFO) << "AddLines printing line: [Point { x: " << points[1].x
                    << ", y: " << points[1].y << " }, Point { x: " << points[0].x
                    << ", y: " << points[0].y << " }]";

      // Update the bounding box to account for the new line we've just "added" to the canvas.
      auto& bounds = state_.bounding_box;
      for (const auto& point : points) {
        if (point.x < bounds.top_left.x) {
          bounds.top_left.x = point.x;
        }
        if (point.y > bounds.top_left.y) {
          bounds.top_left.y = point.y;
        }
        if (point.x > bounds.bottom_right.x) {
          bounds.bottom_right.x = point.x;
        }
        if (point.y < bounds.bottom_right.y) {
          bounds.bottom_right.y = point.y;
        }
      }
    }

    // Mark the state as "dirty", so that an update is sent back to the client on the next |OnDrawn|
    // event.
    state_.changed = true;
  }

  void Ready(ReadyCompleter::Sync& completer) override {
    FX_LOGS(INFO) << "Ready request received";

    // The client must only call `Ready() -> ();` after receiving an `-> OnDrawn();` event; if two
    // "consecutive" `Ready() -> ();` calls are received, this interaction has entered an invalid
    // state, and should be aborted immediately.
    if (state_.ready == true) {
      FX_LOGS(ERROR) << "Invalid back-to-back `Ready` requests received";
    }

    state_.ready = true;
    completer.Reply();
  }

  void handle_unknown_method(
      fidl::UnknownMethodMetadata<examples_canvas_clientrequesteddraw::Instance> metadata,
      fidl::UnknownMethodCompleter::Sync& completer) override {
    FX_LOGS(WARNING) << "Received an unknown method with ordinal " << metadata.method_ordinal;
  }

 private:
  // Each scheduled update waits for the allotted amount of time, sends an update if something has
  // changed, and schedules the next update.
  void ScheduleOnDrawnEvent(async_dispatcher_t* dispatcher, zx::duration after) {
    async::PostDelayedTask(
        dispatcher,
        [&, dispatcher, after, weak = weak_factory_.GetWeakPtr()] {
          // Halt execution if the binding has been deallocated already.
          if (!weak) {
            return;
          }

          // Schedule the next update if the binding still exists.
          weak->ScheduleOnDrawnEvent(dispatcher, after);

          // No need to send an update if nothing has changed since the last one, or the client has
          // not yet informed us that it is ready for more updates.
          if (!weak->state_.changed || !weak->state_.ready) {
            return;
          }

          // This is where we would draw the actual lines. Since this is just an example, we'll
          // avoid doing the actual rendering, and simply send the bounding box to the client
          // instead.
          auto top_left = weak->state_.bounding_box.top_left;
          auto bottom_right = weak->state_.bounding_box.bottom_right;
          fidl::Status status =
              fidl::WireSendEvent(weak->binding_)->OnDrawn(top_left, bottom_right);
          if (!status.ok()) {
            return;
          }
          FX_LOGS(INFO) << "OnDrawn event sent: top_left: Point { x: " << top_left.x
                        << ", y: " << top_left.y
                        << " }, bottom_right: Point { x: " << bottom_right.x
                        << ", y: " << bottom_right.y << " }";

          // Reset the change and ready trackers.
          state_.ready = false;
          weak->state_.changed = false;
        },
        after);
  }

  fidl::ServerBinding<examples_canvas_clientrequesteddraw::Instance> binding_;
  CanvasState state_ = CanvasState{};

  // Generates weak references to this object, which are appropriate to pass into asynchronous
  // callbacks that need to access this object. The references are automatically invalidated
  // if this object is destroyed.
  fxl::WeakPtrFactory<InstanceImpl> weak_factory_;
};

int main(int argc, char** argv) {
  FX_LOGS(INFO) << "Started";

  // The event loop is used to asynchronously listen for incoming connections and requests from the
  // client. The following initializes the loop, and obtains the dispatcher, which will be used when
  // binding the server implementation to a channel.
  async::Loop loop(&kAsyncLoopConfigNeverAttachToThread);
  async_dispatcher_t* dispatcher = loop.dispatcher();

  // Create an |OutgoingDirectory| instance.
  //
  // The |component::OutgoingDirectory| class serves the outgoing directory for our component. This
  // directory is where the outgoing FIDL protocols are installed so that they can be provided to
  // other components.
  component::OutgoingDirectory outgoing = component::OutgoingDirectory(dispatcher);

  // The `ServeFromStartupInfo()` function sets up the outgoing directory with the startup handle.
  // The startup handle is a handle provided to every component by the system, so that they can
  // serve capabilities (e.g. FIDL protocols) to other components.
  zx::result result = outgoing.ServeFromStartupInfo();
  if (result.is_error()) {
    FX_LOGS(ERROR) << "Failed to serve outgoing directory: " << result.status_string();
    return -1;
  }

  // Register a handler for components trying to connect to
  // |examples.canvas.clientrequesteddraw.Instance|.
  result = outgoing.AddUnmanagedProtocol<examples_canvas_clientrequesteddraw::Instance>(
      [dispatcher](fidl::ServerEnd<examples_canvas_clientrequesteddraw::Instance> server_end) {
        // Create an instance of our InstanceImpl that destroys itself when the connection closes.
        new InstanceImpl(dispatcher, std::move(server_end));
      });
  if (result.is_error()) {
    FX_LOGS(ERROR) << "Failed to add Instance protocol: " << result.status_string();
    return -1;
  }

  // Everything is wired up. Sit back and run the loop until an incoming connection wakes us up.
  FX_LOGS(INFO) << "Listening for incoming connections";
  loop.Run();
  return 0;
}

HLCPP

用戶端

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <lib/async-loop/cpp/loop.h>
#include <lib/sys/cpp/component_context.h>
#include <lib/syslog/cpp/macros.h>
#include <unistd.h>

#include <charconv>

#include <examples/canvas/clientrequesteddraw/cpp/fidl.h>
#include <examples/fidl/new/canvas/client_requested_draw/hlcpp/client/config.h>

// A helper function that takes a coordinate in string form, like "123,-456", and parses it into a
// a struct of the form |{ in64 x; int64 y; }|.
::examples::canvas::clientrequesteddraw::Point ParsePoint(std::string_view input) {
  int64_t x = 0;
  int64_t y = 0;
  size_t index = input.find(',');
  if (index != std::string::npos) {
    std::from_chars(input.data(), input.data() + index, x);
    std::from_chars(input.data() + index + 1, input.data() + input.length(), y);
  }
  return ::examples::canvas::clientrequesteddraw::Point{.x = x, .y = y};
}

using Line = ::std::array<::examples::canvas::clientrequesteddraw::Point, 2>;

// A helper function that takes a coordinate pair in string form, like "1,2:-3,-4", and parses it
// into an array of 2 |Point| structs.
Line ParseLine(const std::string& action) {
  auto input = std::string_view(action);
  size_t index = input.find(':');
  if (index != std::string::npos) {
    return {ParsePoint(input.substr(0, index)), ParsePoint(input.substr(index + 1))};
  }
  return {};
}

int main(int argc, const char** argv) {
  FX_LOGS(INFO) << "Started";

  // Retrieve component configuration.
  auto conf = config::Config::TakeFromStartupHandle();

  // Start up an async loop.
  async::Loop loop(&kAsyncLoopConfigNeverAttachToThread);
  async_dispatcher_t* dispatcher = loop.dispatcher();

  // Connect to the protocol inside the component's namespace, then create an asynchronous client
  // using the newly-established connection.
  examples::canvas::clientrequesteddraw::InstancePtr instance_proxy;
  auto context = sys::ComponentContext::Create();
  context->svc()->Connect(instance_proxy.NewRequest(dispatcher));
  FX_LOGS(INFO) << "Outgoing connection enabled";

  instance_proxy.set_error_handler([&loop](zx_status_t status) {
    FX_LOGS(ERROR) << "Shutdown unexpectedly";
    loop.Quit();
  });

  // Provide a lambda to handle incoming |OnDrawn| events asynchronously.
  instance_proxy.events().OnDrawn =
      [&loop](::examples::canvas::clientrequesteddraw::Point top_left,
              ::examples::canvas::clientrequesteddraw::Point bottom_right) {
        FX_LOGS(INFO) << "OnDrawn event received: top_left: Point { x: " << top_left.x
                      << ", y: " << top_left.y << " }, bottom_right: Point { x: " << bottom_right.x
                      << ", y: " << bottom_right.y << " }";
        loop.Quit();
      };

  instance_proxy.events().handle_unknown_event = [](uint64_t ordinal) {
    FX_LOGS(WARNING) << "Received an unknown event with ordinal " << ordinal;
  };

  std::vector<Line> batched_lines;
  for (const auto& action : conf.script()) {
    // If the next action in the script is to "PUSH", send a batch of lines to the server.
    if (action == "PUSH") {
      instance_proxy->AddLines(batched_lines);
      batched_lines.clear();
      FX_LOGS(INFO) << "AddLines request sent";
      continue;
    }

    // If the next action in the script is to "WAIT", block until an |OnDrawn| event is received
    // from the server.
    if (action == "WAIT") {
      loop.Run();
      loop.ResetQuit();

      // Now, inform the server that we are ready to receive more updates whenever they are ready
      // for us.
      FX_LOGS(INFO) << "Ready request sent";
      instance_proxy->Ready([&](fpromise::result<void, fidl::FrameworkErr> result) {
        if (result.is_error()) {
          // Check that our flexible two-way call was known to the server and handle the case of an
          // unknown method appropriately. In the case of this example, there is nothing we can do
          // to recover here, except to log an error and exit the program.
          FX_LOGS(ERROR) << "Server does not implement AddLine";
        }

        FX_LOGS(INFO) << "Ready success";

        // Quit the loop, thereby handing control back to the outer loop of actions being iterated
        // over.
        loop.Quit();
      });

      // Run the loop until the callback is resolved, at which point we can continue from here.
      loop.Run();
      loop.ResetQuit();

      continue;
    }

    // Batch a line for drawing to the canvas using the two points provided.
    Line line = ParseLine(action);
    batched_lines.push_back(line);
    FX_LOGS(INFO) << "AddLines batching line: [Point { x: " << line[1].x << ", y: " << line[1].y
                  << " }, Point { x: " << line[0].x << ", y: " << line[0].y << " }]";
  }

  // TODO(https://fxbug.dev/42156498): We need to sleep here to make sure all logs get drained. Once the
  // referenced bug has been resolved, we can remove the sleep.
  sleep(2);
  return 0;
}

伺服器

// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <lib/async-loop/cpp/loop.h>
#include <lib/async-loop/default.h>
#include <lib/async/cpp/task.h>
#include <lib/fidl/cpp/binding.h>
#include <lib/sys/cpp/component_context.h>
#include <lib/syslog/cpp/macros.h>
#include <unistd.h>

#include <examples/canvas/clientrequesteddraw/cpp/fidl.h>
#include <src/lib/fxl/macros.h>
#include <src/lib/fxl/memory/weak_ptr.h>

// A struct that stores the two things we care about for this example: the set of lines, and the
// bounding box that contains them.
struct CanvasState {
  // Tracks whether there has been a change since the last send, to prevent redundant updates.
  bool changed = true;
  // Tracks whether or not the client has declared itself ready to receive more updated.
  bool ready = true;
  examples::canvas::clientrequesteddraw::BoundingBox bounding_box;
};

using Line = ::std::array<::examples::canvas::clientrequesteddraw::Point, 2>;

// An implementation of the |Instance| protocol.
class InstanceImpl final : public examples::canvas::clientrequesteddraw::Instance {
 public:
  // Bind this implementation to an |InterfaceRequest|.
  InstanceImpl(async_dispatcher_t* dispatcher,
               fidl::InterfaceRequest<examples::canvas::clientrequesteddraw::Instance> request)
      : binding_(fidl::Binding<examples::canvas::clientrequesteddraw::Instance>(this)),
        weak_factory_(this) {
    binding_.Bind(std::move(request), dispatcher);

    // Gracefully handle abrupt shutdowns.
    binding_.set_error_handler([this](zx_status_t status) mutable {
      if (status != ZX_ERR_PEER_CLOSED) {
        FX_LOGS(ERROR) << "Shutdown unexpectedly";
      }
      delete this;
    });

    // Start the update timer on startup. Our server sends one update per second.
    ScheduleOnDrawnEvent(dispatcher, zx::sec(1));
  }

  void AddLines(std::vector<Line> lines) override {
    FX_LOGS(INFO) << "AddLines request received";
    for (const auto& points : lines) {
      FX_LOGS(INFO) << "AddLines printing line: [Point { x: " << points[1].x
                    << ", y: " << points[1].y << " }, Point { x: " << points[0].x
                    << ", y: " << points[0].y << " }]";

      // Update the bounding box to account for the new line we've just "added" to the canvas.
      auto& bounds = state_.bounding_box;
      for (const auto& point : points) {
        if (point.x < bounds.top_left.x) {
          bounds.top_left.x = point.x;
        }
        if (point.y > bounds.top_left.y) {
          bounds.top_left.y = point.y;
        }
        if (point.x > bounds.bottom_right.x) {
          bounds.bottom_right.x = point.x;
        }
        if (point.y < bounds.bottom_right.y) {
          bounds.bottom_right.y = point.y;
        }
      }
    }

    // Mark the state as "dirty", so that an update is sent back to the client on the next
    // |OnDrawn| event.
    state_.changed = true;
  }

  void Ready(ReadyCallback callback) override {
    FX_LOGS(INFO) << "Ready request received";

    // The client must only call `Ready() -> ();` after receiving an `-> OnDrawn();` event; if
    // two "consecutive" `Ready() -> ();` calls are received, this interaction has entered an
    // invalid state, and should be aborted immediately.
    if (state_.ready == true) {
      FX_LOGS(ERROR) << "Invalid back-to-back `Ready` requests received";
    }

    state_.ready = true;
    callback(fpromise::ok());
  }

  void handle_unknown_method(uint64_t ordinal, bool method_has_response) override {
    FX_LOGS(WARNING) << "Received an unknown method with ordinal " << ordinal;
  }

 private:
  // Each scheduled update waits for the allotted amount of time, sends an update if something
  // has changed, and schedules the next update.
  void ScheduleOnDrawnEvent(async_dispatcher_t* dispatcher, zx::duration after) {
    async::PostDelayedTask(
        dispatcher,
        [&, dispatcher, after, weak = weak_factory_.GetWeakPtr()] {
          // Halt execution if the binding has been deallocated already.
          if (!weak) {
            return;
          }

          // Schedule the next update if the binding still exists.
          weak->ScheduleOnDrawnEvent(dispatcher, after);

          // No need to send an update if nothing has changed since the last one, or the client
          // has not yet informed us that it is ready for more updates.
          if (!weak->state_.changed || !weak->state_.ready) {
            return;
          }

          // This is where we would draw the actual lines. Since this is just an example, we'll
          // avoid doing the actual rendering, and simply send the bounding box to the client
          // instead.
          auto top_left = state_.bounding_box.top_left;
          auto bottom_right = state_.bounding_box.bottom_right;
          binding_.events().OnDrawn(top_left, bottom_right);
          FX_LOGS(INFO) << "OnDrawn event sent: top_left: Point { x: " << top_left.x
                        << ", y: " << top_left.y
                        << " }, bottom_right: Point { x: " << bottom_right.x
                        << ", y: " << bottom_right.y << " }";

          // Reset the change and ready trackers.
          state_.ready = false;
          state_.changed = false;
        },
        after);
  }

  fidl::Binding<examples::canvas::clientrequesteddraw::Instance> binding_;
  CanvasState state_ = CanvasState{};

  // Generates weak references to this object, which are appropriate to pass into asynchronous
  // callbacks that need to access this object. The references are automatically invalidated
  // if this object is destroyed.
  fxl::WeakPtrFactory<InstanceImpl> weak_factory_;
};

int main(int argc, char** argv) {
  FX_LOGS(INFO) << "Started";

  // The event loop is used to asynchronously listen for incoming connections and requests from
  // the client. The following initializes the loop, and obtains the dispatcher, which will be
  // used when binding the server implementation to a channel.
  //
  // Note that unlike the new C++ bindings, HLCPP bindings rely on the async loop being attached
  // to the current thread via the |kAsyncLoopConfigAttachToCurrentThread| configuration.
  async::Loop loop(&kAsyncLoopConfigAttachToCurrentThread);
  async_dispatcher_t* dispatcher = loop.dispatcher();

  // Create an |OutgoingDirectory| instance.
  //
  // The |component::OutgoingDirectory| class serves the outgoing directory for our component.
  // This directory is where the outgoing FIDL protocols are installed so that they can be
  // provided to other components.
  auto context = sys::ComponentContext::CreateAndServeOutgoingDirectory();

  // Register a handler for components trying to connect to
  // |examples.canvas.clientrequesteddraw.Instance|.
  context->outgoing()->AddPublicService(
      fidl::InterfaceRequestHandler<examples::canvas::clientrequesteddraw::Instance>(
          [dispatcher](
              fidl::InterfaceRequest<examples::canvas::clientrequesteddraw::Instance> request) {
            // Create an instance of our |InstanceImpl| that destroys itself when the connection
            // closes.
            new InstanceImpl(dispatcher, std::move(request));
          }));

  // Everything is wired up. Sit back and run the loop until an incoming connection wakes us up.
  FX_LOGS(INFO) << "Listening for incoming connections";
  loop.Run();
  return 0;
}